

Item

Substrate

Thickness Orientation

Wafer Diameter

Orientation Flat

Surface Finishing

GaN POWER TECHNOLOGY

000C04EP02

GALLIUM NITRIDE GaN on SiC EPI-WAFERS

Sophisticated buffer layer for low leakage current

Superior thermal conductivity due to the SiC substrate

Lowest defect density of the crystal

Perfect base for all kind of RF devices

MGT 🔺 Manufacturer Group of Technology

Highest power density

4" AlGaN/GaN EPI-WAFERS on SiC-Sub

HALOGEN

Orientat

Length

FREE

SUBSTRATE SPECIFICATION

	Characteristics
	4-inch high-purity semi-insulating SiC substrate
	100.00 +0/-0.5mm
	500 ± 25μm
	(0001) just ± 0.2°
tion	<11-20> ± 5°
	32.5 ± 2.0mm
	Si-face, CMP polish, C-face optical polish

TYPICAL HEMT STRUCTURE ON SIC SUBSTRATE

APPLICATIONS

Hybrid	Radar	Receive/Transmit	RF Devices	Telecom	Wireless
Amplifiers	Systems	Modules		Systems	Communication
<u> </u>		((())	МНг		5G/6G

000C04EP02 A Rev.001 A Date: 29/03/2022 A Page: 1

Copyright by MGT A www.mgt.co.com All rights reserved The information in this document is subject to change without notice.

EPITAXIAL LAYER STRUCTURE

Layer	Material	Al Composition	Thickness (nm)	Dopant	Doping (cm ⁻³)
6	i-GaN	-	2	-	-
5	i-AlGaN	0.2 ~ 0.3	15 ~ 25	-	-
4	i-AlN	1	0~1	-	-
3	i-GaN	-	300	-	-
2	Buffer layer (Fe-doped)	-	1700	(Fe)	~ 1 x 10 ¹⁸
1	Nucleation	-	-	-	-
Substrate	SiC				

Note:

- 1: Al content and thickness of AlGaN barrier can be modified in the range of listed value according to customer Requirement.
- 2: The AIN spacer between AlGaN barrier and GaN channel is selectable according to customer requirement.

EPITAXIAL WAFER SPECIFICATION

Item	Specifica	ation	Comments		
Parriar layor thicknoss (nm)	20 ± 2nm		VDD	2 mainte	
barrier layer thickness (hill)	C.V.	< 3% (< 2% [Target])	AND	5 points	
Parrier layer Al composition ³	0.25 ± 0.01		VDD	2 mainte	
Barrier layer Ar composition	C.V.	< 3% (< 2% [Target])	AND	5 points	
	Average	Designed ± 10%	Optical	5 points	
Total EPI thickness (nm) ⁴	Var	≤ ±10%			
	C.V.	< 3% (< 2% [Target])	interrerometer		
Shoot registivity $(O/ca)^{5}$	Average	390 ± 20%	Non-destructive reference		
Sheet resistivity (22/sq.)	C.V.	< 2% (< 1.5% [Target])			
Wafer bow (μ m) ⁶	I Bow I	≤ 50 [Target]	Flantess tester, E	E/E: 5mm	
Surface defect density	$\leq 1 \times 10^{19} \text{ cm}^{-2}$		AFM, center, one wafer per batch		

Note:

- 3: Will be tuned according to the expected R_s value.
- 4: The value of total EPI thickness includes that of the nucleation layer. Please be aware that there should be the difference between the designed value.
- 5: The value of sheet resistance is varied according to the Al content and thickness of AlGaN barrier and/or existence of AlN.
- 6: Wafer bowing is strongly affected by the initial shape of the SiC substrate.

TYPICAL ATOMIC FORCE MICROSCOPY (AFM) IMAGE

TYPICAL CHARACTERISTICS OF HEMT ON SIC

Barrier specification: Al_xGa_{1-x}N Barrier: x = 0.2 ~ 0.3, thickness = 15 ~ 25nm

Notes:

- 1: Barrier specification (Thickness and Al composition) can be tuned
- 2: AIN spacer can be inserted
- 3: Actual 2DEG characteristics will be varied depending on Al specification. Please note the 2DEG value as reference

4 INCH SIC SUBSTRATE

Item	Characteristics
Material	SiC
Poly-type	4H
Orientation	(0001) just ± 0.2°
Wafer Diameter	100.0 +0/-0.5 mm
Thickness	500 ± 25 μm
Orientation Flat	<11-20> ± 5°
Length	32.5 ± 2.0 mm
Surface Finishing	Si-face, CMP polish, C-face optical polish
Resistivity	> 1 x 10 ⁷ Ωcm

ORDERING INFORMATION AND PACKAGING

Part Number	Quantity (pcs) Wafer / Inner Box	Quantity Inner Box (pcs)	L x W x H (mm) Inner Box	Quantity (pcs) Wafer / Outer Carton	L x W x H (mm) Outer Carton
000C04EP02-12	3	4	230 x 160 x 180	12	385 x 320 x 475
000C04EP02-18	3	6	230 x 160 x 180	18	565 x 320 x 475

Inner Box

Outer Carton

Each wafer packed in cassette and vacuum bag.

CONFIRMATION TABLE

Items to be confirmed

- The structure of nucleation layer is based on GPT standard specification.
- The total thickness of epi wafer will be evaluated using optical interferometer.
- The composition and layer thickness of AlGaN barrier layer shall be tuned based on the x-ray diffraction measurement result of the evaluation wafer prior to the growth of the actual wafers. The Al composition and the layer thickness of the barrier layer will be configured based on the spectrum fitting results obtained from the x-ray diffraction measurement results.
- No visible cracks on the wafer surface.
- The wafer margin of 5mm from the edge is excluded for the guaranteed specifications listed above.
- The device characteristics using the delivered wafers are not guaranteed.
- Attached documents are
 - Delivered epi wafer list
 - Total thickness data (for each wafer)
 - Evaluated values of the barrier layer composition and thickness by X-ray diffraction curve fitting (3 points, "calibration epi"*)
 - XRD-FWHM [(0002) and (10-12)] (center, for each wafer)
 - Wafer bowing (for each wafer)

REVISION TABLE

Revision	Date	Status	Notes
001	29/03/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <u>www.mgt.co.com.</u>