

ACAH SERIES

2000 HOURS LOW HEIGHT TYPE

ALUMINUM SOLID ELECTROLYTIC CAPACITOR ▲ STACKED type Very high ripple current up to 8.5A at 100kHz/45°C Ultra-low ESR up to $4.5m\Omega$ at $100kHz/20^{\circ}C$ Low drift and stable electrical characteristics over lifetime No liquid electrolyte ▲ No dry-out effect Moisture Sensitivity Level ▲ MSL 3

Low height with 1.9mm ideal for space critical applications

SPECIFICATION

Item		2.5 V_{DC} to 25 V_{DC} 33 μ F to 470 μ F ±20% \blacktriangle +10 to -35% $V_S = 1.25 \times V_R$ V_R : 2 V_{DC} to 16 V_{DC} $V_S = 1.15 \times V_R$ V_R : 20 V_{DC} to 25 V_{DC} 0.06 max.				
Category Temperature Range		-55°C to +105°C				
Rated Voltage Range	V_R	2.5V _{DC} to 25V _{DC}				
Rated Capacitance Range	C_R	33μF to 470μF				
Capacitance Tolerance • At 20°C; 120Hz	ΔC	±20% ▲ +10 to -35%				
Surge Voltage • At 15 to 35°C	V-	$V_S = 1.25 \times V_R$	V_R : $2V_{DC}$ to $16V_{DC}$			
Julge Voltage - At 13 to 33 C	VŞ	$V_S = 1.15 \times V_R$	V_R : $20V_{DC}$ to $25V_{DC}$			
Dissipation Factor • At 20°C; 120Hz	tan δ	0.06 max.				
		$I_{LEAK} = 0.1 \times C_R \times V_R$	V_R : $2V_{DC}$ to $6.3V_{DC}$			
Leakage Current • At 20°C; after 2min.	I _{LEAK}	$I_{LEAK} = 0.3 \times C_R \times V_R$	V_R : $10V_{DC}$ to $25V_{DC}$			
		With I_{LEAK} (μ A) \triangle C_R (μ F) \triangle V_R (V_{DC})				
	Test	105°C ▲ 2000hrs ▲ V _R applied				
Endurance	Appearance	No significant damage				
	ΔC/C _R	≤ ±20% of the initial value				
	tan δ	≤ 200% of the initial specified value				
		≤ 300% of the initial specified value	V_R : $2V_{DC}$ to $6.3V_{DC}$			
	ILEAK	≤ The initial specified value	V_R : 10 V_{DC} to 25 V_{DC}			
	Test	60°C ▲ 90 to 95% RH ▲ 500hrs ▲ No voltage applied				
	Appearance	No significant damage				
	ACIC	+70% / -20% of the initial value	V_R : $2V_{DC}$ to $6.3V_{DC}$			
Damp Heat (Steady State)	ΔC/C _R	+60% / -20% of the initial value	V_R : $10V_{DC}$ to $25V_{DC}$			
	tan δ	≤ 200% of the initial specified value				
	$-55^{\circ}C \text{ to } +105^{\circ}C$ $C_{R} \qquad 33\mu\text{F to } 470\mu\text{F}$ $120\text{Hz} \qquad \Delta C \qquad \pm 20\% \Delta +10 \text{ to } -35\%$ $V_{S} = 1.25 \times V_{R} \qquad V_{S}$ $V_{S} = 1.15 \times V_{R} \qquad V_{S}$ $V_{S} = 1.25 \times V_{R} \qquad V_{R}$ $V_{S} = 1.25 \times V_{R}$ $V_{S} = 1.25 \times V_{R}$ V	V_R : $2V_{DC}$ to $6.3V_{DC}$				
	ILEAK	≤ 300% of the initial specified value	$V_R \!\!: 10 V_{DC}$ to $25 V_{DC}$			
		1000 cycles and each one includes c	harge with V _s			
	$ \begin{array}{c c} \mbox{Appearance} & \mbox{No signific} \\ \mbox{$\Delta C/C_R$} & \leq \pm 20\% \mbox{ of} \\ \mbox{ΔL_{LEAK}} & \leq 200\% \mbox{ of} \\ \mbox{$\leq 300\%$ of} \\ \mbox{$\leq The initi} \\ \mbox{$Test$} & \mbox{60°C} $ \mbox{$\triangleq 90$} \\ \mbox{$Appearance} & \mbox{$No signific} \\ \mbox{$\Delta C/C_R$} & \mbox{$\leq 100\%$ of} \\ \mbox{I_{LEAK}} & \mbox{$\leq 200\%$ of} \\ \mbox{I_{LEAK}} & \mbox{$\leq 300\%$ of} \\ \mbox{$Test$} & \mbox{1000 cycle} \\ \mbox{$\approx 300\%$ of} \\ \mbox{$q specified arresistor (R)} \\ \mbox{$Appearance} & \mbox{$No signific} \\ \mbox{$\Delta C/C_R$} & \mbox{$\leq \pm 10\%$ of} \\ \mbox{$a Looperate of the initi} \\ \mbox{$\leq 100\%$ of} \\ ≤ 10	specified at 15°C to 35°C for 0.5min	through a protective			
		resistor (R=1k Ω) and discharge for 5.	5min.			
Surge Voltage	Appearance	No significant damage				
	ΔC/C _R	≤ ±10% of the initial value				
	tan δ	≤ The initial specified value				
	I _{LEAK}	≤ The initial specified value				

ELECTRICAL CHARACTERISTICS

V R DC	C_R	Din	nensions (m	nm)	I _{LEAK} 20°C	ESR 20°C	I _R ≤ 45°C	Part Number Note 1
(V)	(μF)	L	w	н	2min (μA)	100kHz (mΩ)	100kHz (mA)	Part Number
	470	7.3	4.3	1.9	94	9	6300	ACAH2R0S471E09
2	470	7.3	4.3	1.9	94	9	6300	ACAH2R0S471E09Y
2	470	7.3	4.3	1.9	94	6	7500	ACAH2R0S471E06
	470	7.3	4.3	1.9	94	4.5	8500	ACAH2R0S471E04
	470	7.3	4.3	1.9	117.5	9	6300	ACAH2R5S471E09
2.5	470	7.3	4.3	1.9	117.5	9	6300	ACAH2R5S471E09Y
2.5	470	7.3	4.3	1.9	117.5	6	7500	ACAH2R5S471E06
	470	7.3	4.3	1.9	117.5	4.5	8500	ACAH2R5S471E04
10	100	7.3	4.3	1.9	300	40	3200	ACAH100S101E40
10	100	7.3	4.3	1.9	300	40	3200	ACAH100S101E40Y
	47	7.3	4.3	1.9	225.6	40	3200	ACAH160S470E40
16	56	7.3	4.3	1.9	268.8	40	3200	ACAH160S560E40
	68	7.3	4.3	1.9	326.4	40	3200	ACAH160S680E40
20	33	7.3	4.3	1.9	198	40	3200	ACAH200S330E40
25	33	7.3	4.3	1.9	247.5	40	3200	ACAH250S330E40

Notes

TEMPERATURE CORRECTION FACTOR

Temperature Correction Factor of Permissible Ripple Current									
Rated Voltage V_R Surface Temperature $\leq 45^{\circ}\text{C}$ $45^{\circ}\text{C} < T_S \leq 85^{\circ}\text{C}$ $85^{\circ}\text{C} < T_S \leq 105^{\circ}\text{C}$									
2V _{DC} to 6.3V _{DC}	Coefficient	1	0.7	0.25					
10V _{DC} to 25V _{DC}	Coefficient	1	0.8	0.5					

APPLICATIONS

CPU, FPGA and IC Buffering	High Frequency Applications	Substitution of MLCC Banks	USB Power Supplies & Banks	Voltage Stabilizing in LED Panels
	O M		**	

¹ Part number shows the standard Tape/Reel version

REFERENCE DATA Δ ACAH2R0S471E04 Δ 470μF Δ 2V Δ 4mΩ

Fig. 1 • Frequency Characteristics of ESR & |Z|

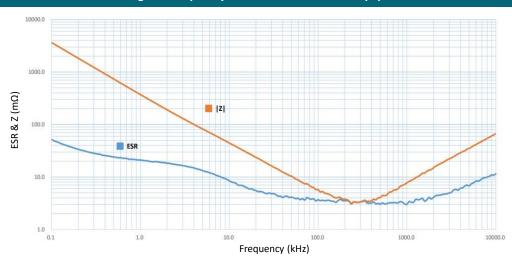


Fig. 2 • Frequency Characteristics of C (μF)

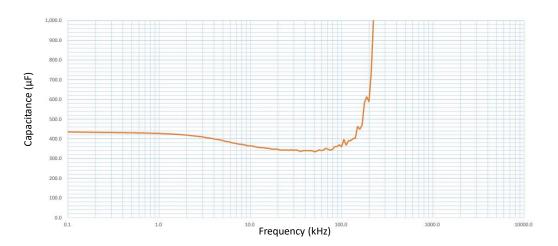
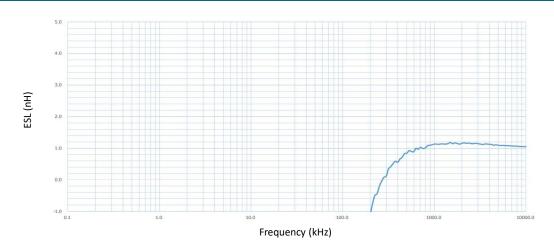



Fig. 3 • Frequency Characteristics of ESL (nH)

MGT ▲ Manufacturer Group of Technology

REFERENCE DATA A ACAH100S101E40 A 100μF A 10V A 40mΩ

Fig. 4 • Frequency Characteristics of ESR & |Z|

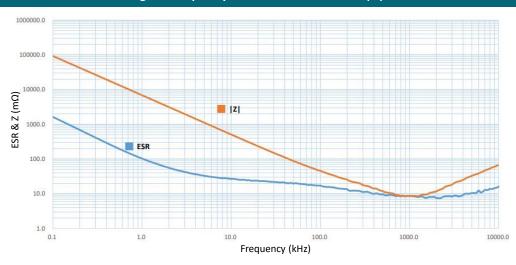


Fig. 5 • Frequency Characteristics of C (μF)

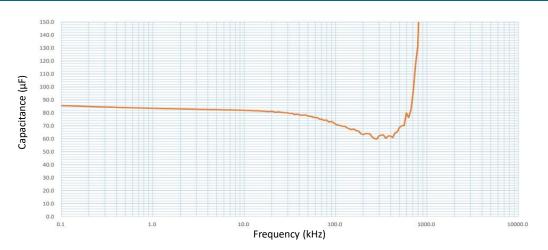
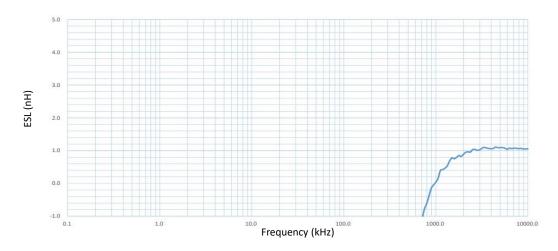



Fig. 6 • Frequency Characteristics of ESL (nH)

MGT ▲ Manufacturer Group of Technology

REFERENCE DATA A ACAH200S330E40 A 33μF A 20V A 40mΩ

Fig. 7 • Frequency Characteristics of ESR & |Z|

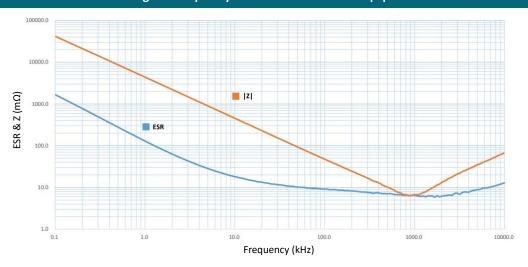


Fig. 8 • Frequency Characteristics of C (μF)

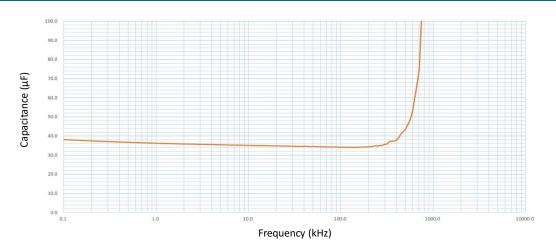
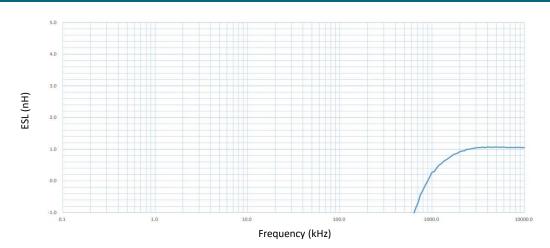



Fig. 9 • Frequency Characteristics of ESL (nH)

MGT ▲ Manufacturer Group of Technology

PACKAGE OUTLINE ▲ All dimensions in mm

Dimensions									
	Case Size: S	Dimension (mm)	Tolerance (mm)						
	L	7.3	± 0.3						
- WA	WA	4.3	± 0.3						
M N N N N N N N N N N N N N N N N N N N	WB	2.4	± 0.2						
	Н	1.9	± 0.2						
<u> </u>	Р	1.3	± 0.2						

PRODUCT CODE

Example: ACAH series \blacktriangle 470 μ F \blacktriangle 2.5 V_{DC} \blacktriangle +10 to -35% \blacktriangle 9m Ω \blacktriangle Tape/Reel

AC	АН	2F	R5	S		47	71	EC	9	Y	
Ser	ries	Rat Volt (Vi	age	Package Code		Capacitance Code ^{Note 1} (μ F)		ESR		Suffix for Capacitance Tolerance	
Code	Series	Code	VDC	Code	L x W x H mm	Code	μF	Code	mΩ	Code	Tol. in %
ACAH	ACAH	2R0 2R5 100 160 200 250	2.0 2.5 10 16 20 25	S	7.3x4.3x1.9	330 560 101 471	33 56 100 470	E04 E06 E09 E40	4.5 6 9 40	Blank Y	±20 +10 to -35

Note:

PRODUCT MARKING

	Marking		Det	ails
O			Marking	Description
Polarity			Capacitance	470 = 470μF
Marking	470 ←		Voltage	2R5 = 2.5V
Logo ──	© 2R5 ←	Voltage	Date code	See date code table
	L01←	— Date code	Logo	Manufacturer Logo
			O	Polarity (+) marking

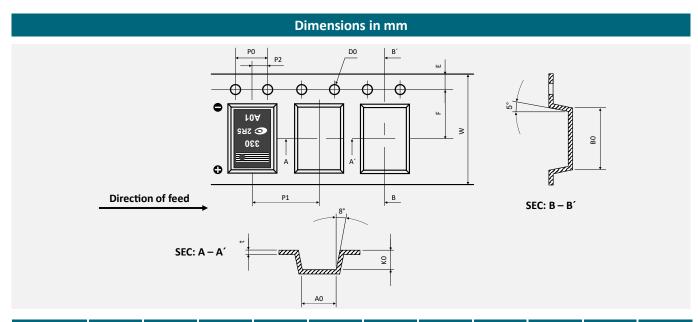
DATE CODE

Example:

Date code

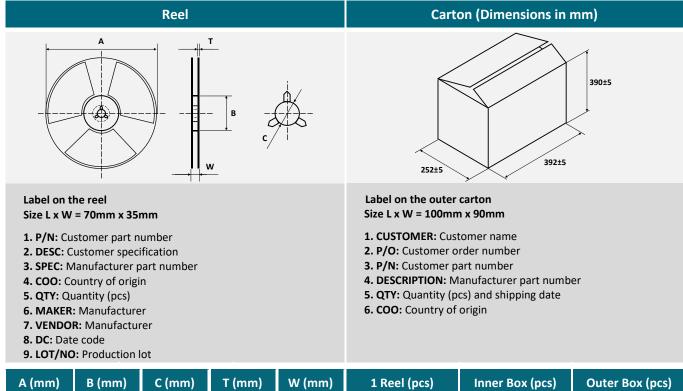
L01: $L01 = 1^{st}$ week of 2020

	A	(01
Ye	ear	W	eek
L	2020	01	1 st
M	2021	02	2 nd
	•••		
V	2030	53	53 rd


MGT

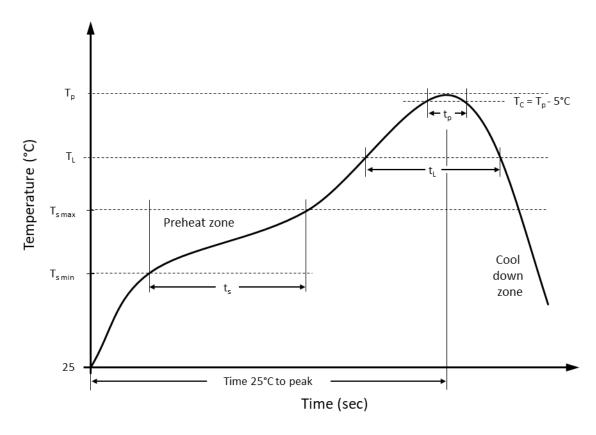
Manufacturer Group of Technology

¹ Capacitance code expressed in μF . The first two digits represent significant figures. The last digit specifies the total number of zeros to be added.



TAPING SPECIFICATION ▲ STACKED TYPE

	W	P1	E	F	D0	P0	P2	A0	В0	КО	t
Tolerance	± 0.1	± 0.1	± 0.1	± 0.1	+ 0.1 - 0.0	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1
Dimension	12	8	1.75	5.5	1.5	4	2	5	7.6	2.3	0.24


REEL DIMENSION AND PACKAGING QUANTITY A STACKED TYPE

A (mm)	B (mm)	C (mm)	T (mm)	W (mm)	1 Reel (pcs)	Inner Box (pcs)	Outer Box (pcs)
330 ± 1.0	100 ± 2.0	13.2 ± 0.3	2.0 ± 0.3	13.5 ± 0.5	2 800	16800	33 600

RECOMMENDED REFLOW SOLDERING PROFILE & STACKED PACKAGE

Recommended reflow soldering conditions

Profile Features		Pb-Free Assembly
Preheat temperature min.	T _{s min}	150 °C
Preheat temperature max.	T_{smax}	200 °C
Preheat time t _s from T _{s min} to T _{s max}	t _s	120 seconds
Ramp-up rate (T _L to T _P)		max. 3 °C/second
Liquidous temperature	TL	217 °C
Time t _L maintained above T _L	t_{\scriptscriptstyleL}	60 to 150 seconds
Peak package body temperature	Tp	See table below
Timeframe of within 5°C below and up to max actual peak body temperature	tp	See table below
Ramp-down rate (T _L to T _P)		max. 6 °C/second
Time 25°C to peak temperature		max. 8 minutes

Rated Voltage (V _{DC})	Time > 200°C	ne > 200°C Time > 230°C T _p Peak t _p Timeframe		Allowed Reflow Runs	
24- 25	24.25		260 °C	Max. 5 sec	Max. twice
2 to 25	90 sec. max.	40 sec. max.	250 °C	Max. 10 sec	Max. three times

REVISION TABLE

Revision	Date	Status	Notes
001	01/10/2021	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, undertake, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.