

ACTH SERIES

125°C WIDE TEMPERATURE TYPE

ALUMINUM SOLID ELECTROLYTIC CAPACITOR ▲ STACKED type Very high ripple current up to 7.5A at 100kHz/45°C Ultra-low ESR up to $6m\Omega$ at $100kHz/20^{\circ}C$ Low drift and stable electrical characteristics over lifetime No liquid electrolyte ▲ No dry-out effect Moisture Sensitivity Level ▲ MSL 3

Low height with 1.9mm ideal for space critical applications

SPECIFICATION

Item		Characteristics				
Category Temperature Range		-55°C to +125°C				
Rated Voltage Range	V_R	2.5V _{DC} to 25V _{DC}				
Rated Capacitance Range	C_R	15μF to 330μF				
Capacitance Tolerance	ΔC	±20% ▲ +10 to -35%				
Surge Voltage • At 15 to 35°C	Vs	$V_S = 1.25 \times V_R$	V_R : $2V_{DC}$ to $2.5V_{DC}$			
Surge Voltage - At 15 to 55 C	Vs	$V_S = 1.15 \times V_R$	$V_R{:}~16V_{DC}~to~25V_{DC}$			
Dissipation Factor • At 20°C; 120Hz	tan δ	0.1 max.				
		$I_{LEAK} = 0.1 \times C_R \times V_R$	V_R : $2V_{DC}$ to $2.5V_{DC}$			
Leakage Current • At 20°C; after 2min.	I _{LEAK}	$I_{LEAK} = 0.3 \times C_R \times V_R$	V_R : 16 V_{DC} to 25 V_{DC}			
		With I_{LEAK} (μA) \blacktriangle C_R (μF) \blacktriangle V_R (V_{DC})				
	Test	125°C ▲ 1000hrs ▲ V _R applied				
	Appearance	No significant damage				
Endurance	ΔC/C _R	≤ ±20% of the initial value				
Endurance	tan δ	≤ 200% of the initial specified value				
		≤ 300% of the initial specified value	V_R : $2V_{DC}$ to $2.5V_{DC}$			
	I _{LEAK}	≤ The initial specified value	V_R : 16 V_{DC} to 25 V_{DC}			
	Test	60°C ▲ 90 to 95% RH ▲ 500hrs • No voltage applied				
	Appearance	No significant damage				
	AC/C	+70% / -20% of the initial value	V_R : $2V_{DC}$ to $2.5V_{DC}$			
Damp Heat (Steady State)	ΔC/C _R	+60% / -20% of the initial value	V_R : 16 V_{DC} to 25 V_{DC}			
	tan δ	≤ 200% of the initial specified value				
		≤ The initial specified value	V_R : $2V_{DC}$ to $2.5V_{DC}$			
	I _{LEAK}	≤ 300% of the initial specified value	V_R : 16 V_{DC} to 25 V_{DC}			
		1000 cycles and each one includes c	harge with V _s			
	Test	specified at 15°C to 35°C for 0.5min through a protective				
		resistor (R=1k Ω) and discharge for 5.5min.				
Surge Voltage	Appearance	No significant damage				
	ΔC/C _R	≤ ±10% of the initial value				
	tan δ	≤ The initial specified value				
	I _{LEAK}	≤ The initial specified value				

ELECTRICAL CHARACTERISTICS

V _{R DC}	C_R	Din	ensions (mm)		I _{LEAK} 20°C	ESR 20°C	I _R ≤ 45°C	Part Number Note 1
(V)	(μF)	(μF) L W H 2min (μA)		I W I H I	100kHz (mΩ)	100kHz (mA)	rait Nullibei	
	330	7.3	4.3	1.9	66	9	6300	ACTH2R0S331E09
2	330	7.3	4.3	1.9	66	9	6300	ACTH2R0S331E09Y
	330	7.3	4.3	1.9	66	6	7500	ACTH2R0S331E06
	330	7.3	4.3	1.9	82.5	9	6300	ACTH2R5S331E09
2.5	330	7.3	4.3	1.9	82.5	9	6300	ACTH2R5S331E09Y
	330	7.3	4.3	1.9	82.5	6	7500	ACTH2R5S331E06
16	47	7.3	4.3	1.9	225.6	40	3200	ACTH160S470E40
16	56	7.3	4.3	1.9	268.8	40	3200	ACTH160S560E40
25	15	7.3	4.3	1.9	112.5	40	3200	ACTH250S150E40
25	33	7.3	4.3	1.9	247.5	40	3200	ACTH250S330E40

Notes

1 Part number shows the standard Tape/Reel version

TEMPERATURE CORRECTION FACTOR

Temperature Correction Factor of Permissible Ripple Current								
Rated Voltage V _R	Surface Temperature	≤ 45°C	45°C < T _S ≤ 85°C	85°C < T _S ≤ 105°C	125°C < T _S			
2V _{DC} to 2.5V _{DC}	Coefficient	1	0.7	0.25	0.25			
16V _{DC} to 25V _{DC}	Coefficient	1	0.8	0.5	0.25			

APPLICATIONS

CPU, FPGA and IC Buffering	High Frequency Applications	Substitution of MLCC Banks	USB Power Supplies & Banks	Voltage Stabilizing in LED Panels
	Out			

REFERENCE DATA Δ ACTH2R5S331E06 Δ 330μF Δ 2.5V Δ 6mΩ

Fig. 1 • Frequency Characteristics of ESR & |Z|

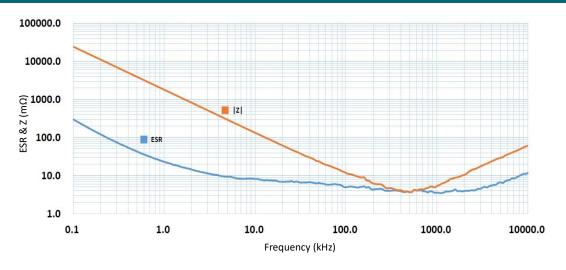


Fig. 2 • Frequency Characteristics of C (μF)

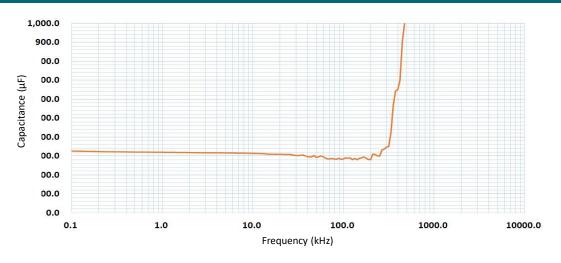
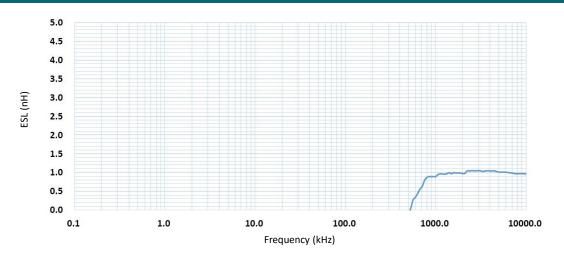



Fig. 3 • Frequency Characteristics of ESL (nH)

MGT ▲ Manufacturer Group of Technology

REFERENCE DATA Δ ACTH160S560E40 Δ 56μF Δ 16V Δ 40mΩ

Fig. 4 • Frequency Characteristics of ESR & |Z|

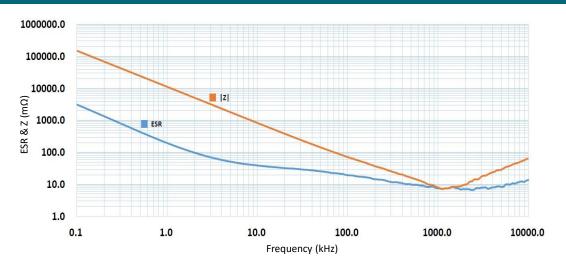


Fig. 5 • Frequency Characteristics of C (μF)

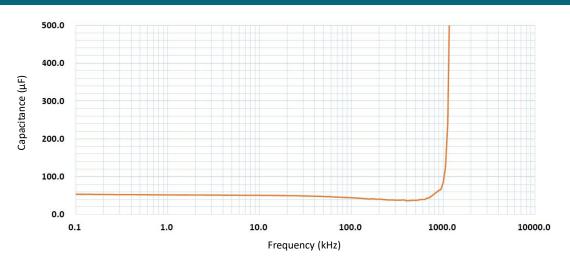
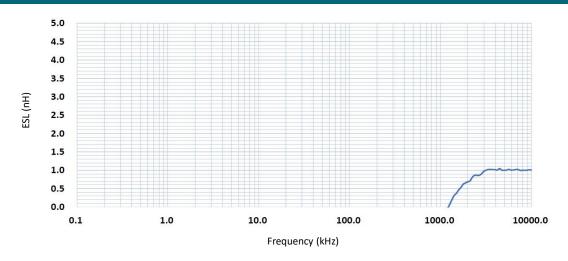



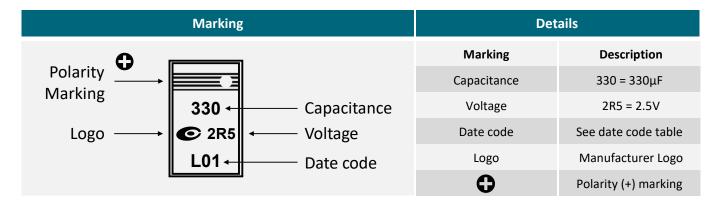
Fig. 6 • Frequency Characteristics of ESL (nH)

MGT ▲ Manufacturer Group of Technology

PACKAGE OUTLINE ▲ All dimensions in mm

Dimensions								
	Case Size: S	Dimension (mm)	Tolerance (mm)					
	L	7.3	± 0.3					
WA WA	WA	4.3	± 0.3					
H RW	WB	2.4	± 0.2					
	Н	1.9	± 0.2					
	Р	1.3	± 0.2					

PRODUCT CODE


Example: ACTH series \blacktriangle 330 μ F \blacktriangle 2.5 V_{DC} \blacktriangle +10 to -35% \blacktriangle 9m Ω \blacktriangle Tape/Reel

AC	тн	21	R5	S		331		E09		Y	
Ser	ies	Rat Volt (V	age	Package Code		Capacitance Code ^{Note 1} (μF)		ESR		Suffix for Capacitance Tolerance	
Code	Series	Code	VDC	Code	L x W x H mm	Code	μF	Code	mΩ	Code	Tol. in %
ACTH	ACTH	2R0 2R5 160 250	2.0 2.5 16 25	S	7.3x4.3x1.9	150 330 560 331	15 33 56 330	E06 E09 E40	6 9 40	Blank Y	±20 +10 to -35

Note:

 $\begin{tabular}{ll} \textbf{Capacitance code expressed in μF. The first two digits represent significant figures.} \\ \textbf{The last digit specifies the total number of zeros to be added.} \\ \end{tabular}$

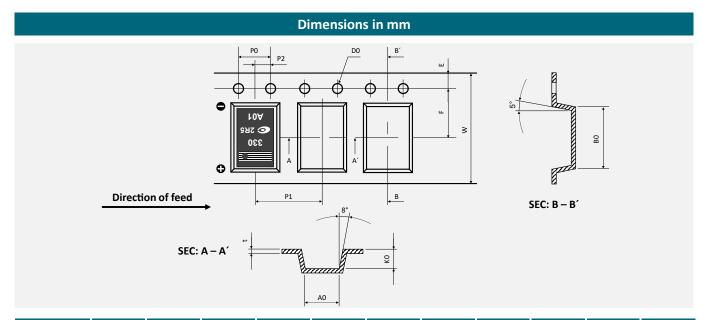
PRODUCT MARKING

DATE CODE

Example:

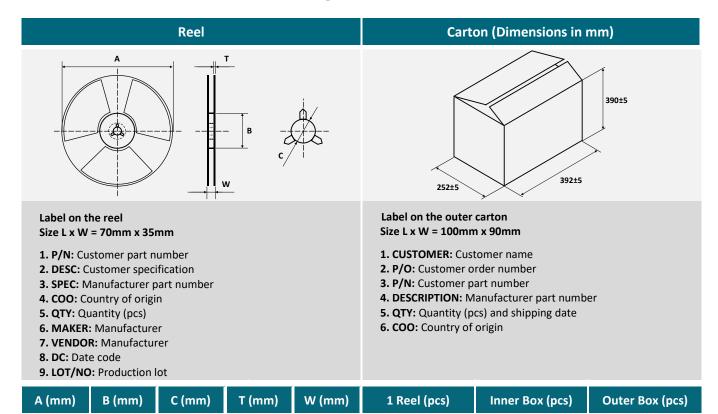
Date code

L01: $L01 = 1^{st}$ week of 2020


	4	(01
Ye	ear	W	'eek
L	2020	01	1 st
M	2021	02	2 nd
V	2030	53	53 rd

MGT

Manufacturer Group of Technology



TAPING SPECIFICATION ▲ STACKED TYPE

	W	P1	E	F	D0	P0	P2	A0	В0	КО	t
Tolerance	± 0.1	± 0.1	± 0.1	± 0.1	+ 0.1 - 0.0	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1
Dimension	12	8	1.75	5.5	1.5	4	2	5	7.6	2.3	0.24

REEL DIMENSION AND PACKAGING QUANTITY A STACKED TYPE

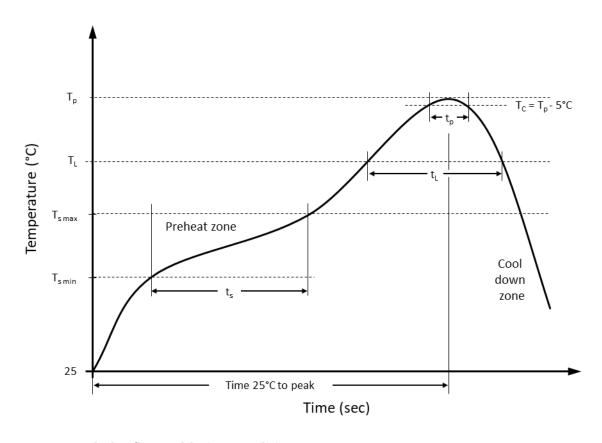
33600

16800

100 ± 2.0

 13.2 ± 0.3

 2.0 ± 0.3


 330 ± 1.0

 13.5 ± 0.5

2800

RECOMMENDED REFLOW SOLDERING PROFILE & STACKED PACKAGE

Recommended reflow soldering conditions

Profile Features		Pb-Free Assembly
Preheat temperature min.	T _{s min}	150 °C
Preheat temperature max.	T_{smax}	200 °C
Preheat time t _s from T _{s min} to T _{s max}	t _s	120 seconds
Ramp-up rate (T _L to T _P)		max. 3 °C/second
Liquidous temperature	TL	217 °C
Time t _L maintained above T _L	t_{\scriptscriptstyleL}	60 to 150 seconds
Peak package body temperature	Tp	See table below
Timeframe of within 5°C below and up to max actual peak body temperature	tp	See table below
Ramp-down rate (T _L to T _P)		max. 6 °C/second
Time 25°C to peak temperature		max. 8 minutes

Rated Voltage (V _{DC})	Time > 200°C	Time > 230°C	T _P Peak Temperature	t _p Timeframe	Allowed Reflow Runs
24- 25	2 to 25 90 sec. max.	40	260 °C	Max. 5 sec	Max. twice
2 to 25		40 sec. max.	250 °C	Max. 10 sec	Max. three times

REVISION TABLE

Revision	Date	Status	Notes
001	01/10/2021	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, undertake, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.