

B1D20065HC

650V ▲ 2x10A ▲ SiC SCHOTTKY DIODE

SILICON CARBIDE SIC SCHOTTKY DIODE ▲ THT type

Common cathode circuit configuration

Easy paralleling due to positive V_F temperature coefficient

TO-247-3L package ▲ Epoxy meets UL94-V0

Low forward voltage

Temperature independent switching

Item (T _C = 25°C, unless otherwise noted)		Characteristics
Operating Temperature Range	Tj	-55°C to +175°C
Storage Temperature Range	Ts	-55°C to +175°C
Repetitive Peak Reverse Voltage	V_{RRM}	650V
Continuous Forward Current at T _C = 155°C Note 1	I _F	10A
Continuous Forward Current at T _C = 155°C Note 2	I _F	20A
Total Capacitive Charge (T _J = 25°C) Note 2	Q c	58nC
Diode Forward Voltage (T _J = 175°C, I _F = 10A) Note 1	V _F	1.45V
Power Dissipation Note 1	P _{TOT}	157W

Notes

Per leg
 Per device

APPLICATIONS

EV Charging	Industrial Inverters	Motors & Drives	Power Factor Correction	Renewable Energy	SMPS	UPS
∳ /•			PFC	*		

PIN DESCRIPTION

Circuit Diagram	Outline • Front View	Pin No.	Description
Backside 1 2 3		1 2 3	Anode Diode 1 Common Cathode (Backside) Anode Diode 2

MGT ▲ Manufacturer Group of Technology

ABSOLUT MAXIMUM RATINGS ▲ T_C = 25°C, unless otherwise noted

ltem	Condition	Symbol		Unit
Repetitive Peak Reverse Voltage		V_{RRM}	650	V
Non-Repetitive Peak Reverse Voltage		V_{RSM}	650	V
Continuous Forward Current	T _C = 25°C	I _F	36 Note 1 / 72 Note 2	Α
Continuous Forward Current	$T_C = 155^{\circ}C$	IF	10 Note 1 / 20 Note 2	Α
Non-Repetitive Forward Surge Current	T_C = 25°C, t_p = 10ms, Half Sine Wave	I _{FSM}	75 Note 1	Α
I ² t Value	$T_C = 25^{\circ}C$, $t_p = 10$ ms	∫i²dt	28.12 Note 1	A^2s
Power Dissipation	T _C = 25°C	P_{TOT}	157 Note 1	W
Power Dissipation	$T_C = 110^{\circ}C$	P_{TOT}	68 Note 1	W
Operating Junction Temperature		TJ	-55 to +175	°C
Storage Temperature Range		T_{STG}	-55 to +175	°C
TO-247 Mounting Torque	M3 Screw		0.7	Nm

Notes

1: Per leg

2: Per device

ELECTRICAL CHARACTERISTICS A PER LEG

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Static Characteristics						
DC Blocking Voltage	T _J = 25°C	V_{DC}	650			V
Diode Forward Voltage	$I_F = 10A, T_J = 25^{\circ}C$	V_{F}		1.45	1.60	V
Diode Forward Voltage	$I_F = 10A, T_J = 175^{\circ}C$	V_{F}		1.75	2.20	V
Reverse Current	$V_R = 650V$, $T_J = 25$ °C	I_R		1	60	μΑ
Reverse Current	$V_R = 650V, T_J = 175^{\circ}C$	I_R		20	300	μΑ
ltem	Condition	Symbol	Min.	Тур.	Max.	Unit
Dynamic Characteristics				. / [-		
	$V_R = 400V, T_J = 25^{\circ}C$					
Total Capacitive Charge	$Q_C = \int_0^{V_R} C(V) dV$	\mathbf{Q}_{C}		29		nC
Total Capacitance	$V_R = 1V$, $f = 1MHz$, $T_J = 25$ °C	С		457		pF
Total Capacitance	$V_R = 300V$, $f = 1MHz$, $T_J = 25$ °C	С		49.7		pF
Total Capacitance	$V_R = 600V$, $f = 1MHz$, $T_J = 25$ °C	С		49.3		pF
Capacitance Stored Energy	$V_R = 400V$, $T_J = 25$ °C	Ec		7.5		μЈ

THERMAL RESISTANCE PERFORMANCE

Item	Symbol	Min.	Тур.	Max.	Unit
Thermal Resistance, Junction to Case, per Leg	$R_{\theta,JC}$		0.952		K/W
Thermal Resistance, Junction to Case, per Device	$R_{\theta,JC}$		0.476		K/W

REFERENCE DATA A TYPICAL PERFORMANCE PER LEG

Fig. 2 • Typical Reverse Current I_R as Fig. 1 • Typical Forward Characteristics IF vs. VF function of Reverse Voltage V_R 20 10 15 25°C 175°C /_R (µА) 150°C 10 150°C 100°C 100℃ 0.1 5 250 300 350 400 450 500 550 600 0.5 1.0 2.0 2.5 3.0 1.5 $V_{\rm F}$ (V) $V_{R}(V)$ Fig. 3 • Diode Forward Current I_F as Fig. 4 • Typical Capacitance C as function of Reverse Voltage V_R , $C = f(V_R)$, $T_J = 25$ °C, f = 1MHz function of Case Temperature T_c (D = Duty Cycle) D=1 600 120 D = 0.7D = 0.3100 500 D=0.2 - D=0.1 400 C (pF) /_F (A) 80 60 300 200 40 20 100 50 125 150 10 100 1000 $V_{R}(V)$ *T*_c (°C) Fig. 5 • Typical Reverse Charge Qc as Fig. 6 - Power Dissipation P_{TOT} as function of Reverse Voltage V_R function of Case Temperature Tc 180 40 160 140 30 120 P_{tot} (W) 100 80 60 10 40 20

MGT 🛕 Manufacturer Group of Technology

125

150

175

75

100

*T*_C (°C)

50

25

200

300

 V_{R} (V)

400

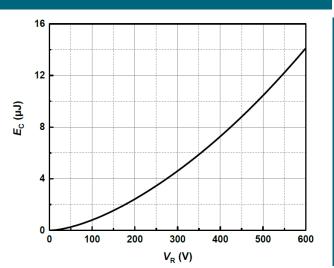
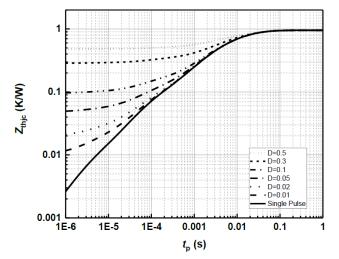
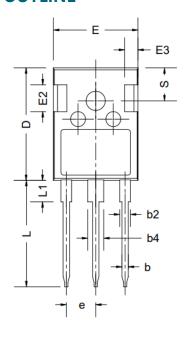
500

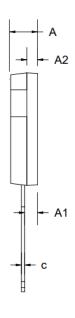
100

600

REFERENCE DATA A TYPICAL PERFORMANCE PER LEG

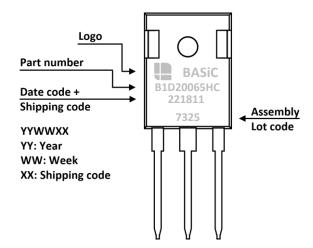
Fig. 7 • Capacitance Stored Energy

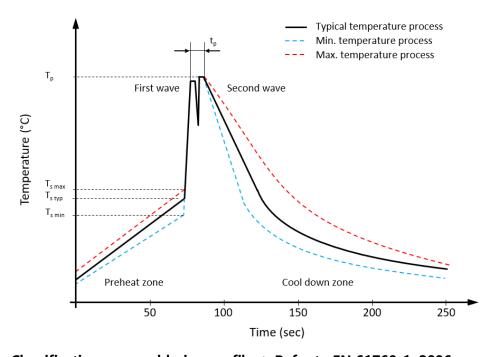

Fig. 8 • Maximum Transient Thermal Impedance, Z_{thjc} = f(t), Parameter: D = t/T

PACKAGE OUTLINE

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
Α	4.80	5.00	5.20
A1	2.21	2.41	2.59
A2	1.85	2.00	2.15
b	1.11	1.21	1.36
b2	1.91	2.01	2.21
b4	2.91	3.01	3.21
С	0.51	0.61	0.75
D	20.80	21.00	21.30
D1	16.25	16.55	16.85
E	15.50	15.80	16.10


Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)		
E1	13.00	13.30	13.60		
E2	4.80	5.00	5.20		
E3	2.30	2.50	2.70		
e	5.44 BSC				
L	19.62	19.92	20.22		
L1	-	-	4.30		
ØΡ	3.40	3.60	3.80		
ØP1	-	-	7.30		
S	6.16 BSC				

ORDERING INFORMATION


Part Number	Package	Packing	Tube Qty.	Inner Box Qty.	Outer Box Qty.
B1D20065HC	TO-247-3L	Tube	30pcs	600pcs	3,000pcs

PART MARKING

RECOMMENDED WAVE SOLDERING PROFILE & THT PACKAGE

Classification wave soldering profile ▲ Refer to EN 61760-1: 2006

Profile Features		Value <u>▲</u> Sn-Pb Assembly	Value <u>▲</u> Pb-free Assembly
Preheat temperature min.	T_{smin}	100 °C	100 °C
Preheat temperature typical	T _{s typ}	120 °C	120 °C
Preheat temperature max.	T _{s max}	130 °C	130 °C
Preheat time t_s from T_{smin} to T_{smax}	t _s	70 seconds	70 seconds
Peak temperature	Tp	235 °C to 260 °C	245 °C to 260 °C
Time of actual peak temperature	t _p	Max. 10 seconds Max. 5 second each wave	Max. 10 seconds Max. 5 second each wave
Ramp-down date min.		~ 2 °C/second	~ 2 °C/second
Ramp-down rate typical		~ 3.5 °C/second	~ 3.5 °C/second
Ramp-down rate max.		~ 5 °C/second	~ 5 °C/second
Time 25°C to 25°C		4 minutes	4 minutes

MGT

Manufacturer Group of Technology

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.