SILICON CARBIDE (SiC) POWER MOSFET ▲ B1M032120HK

BASiC

B1M032120HK

MGT **A** Manufacturer Group of Technology

1200V ▲ 32mΩ ▲ 84A ▲ SIC MOSFET

HALOGEN

FREE

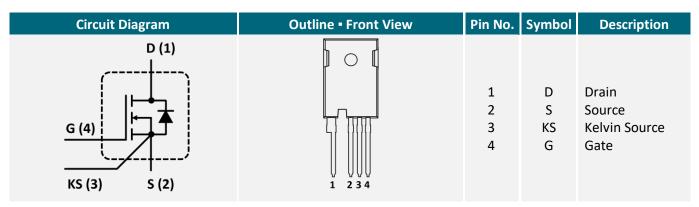
RoHS

SILICON CARBIDE SIC MOSFET ▲ THT type N-channel enhancement mode Low on-resistance and capacitance TO-247-4L package with Kelvin Source connection Avalanche ruggedness Elimination of voltage drops over the source inductance

SPECIFICATION

Item (T _c = 25°C, unless otherwise noted)		Characteristics
Operating Temperature Range	TJ	-55°C to +150°C
Storage Temperature Range	Ts	-55°C to +150°C
Drain-Source Voltage	V _{DS MAX}	1200V
Continuous Drain Current	I _D	84A
Drain-Source On-State Resistance Note 1	R _{DS(ON)TYP}	32mΩ
Reverse Transfer Capacitance Note 2	C _{RSS}	33pF
Power Dissipation	PD	335W

Notes


1: V_{GS} = 20V, I_D = 50A

2: $V_{DS} = 800V, V_{GS} = 0V, f = 1MHz, V_{AC} = 25mV$

APPLICATIONS

EV Charging	Industrial Inverters	Motors & Drives	Power Factor Correction	Renewable Energy	SMPS	UPS
∕Դ∿⊧	0		PFC	*		

PIN DESCRIPTION

B1M032120HK A Rev.001 A Date: 30/09/2022 A Page: 1

Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

ABSOLUT MAXIMUM RATINGS **A** T_c = 25°C, unless otherwise noted

Item	Condition	Symbol		Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_{DS} = 100 \mu A$	$V_{\text{DS}\text{MAX}}$	1200	V
Continuous Drain Current	$V_{GS} = 20V, T_{C} = 25^{\circ}C$	I _D	84	А
Continuous Drain Current	V_{GS} = 20V, T_{C} = 100°C	ID	53	А
Pulse Drain Current	Pulse with t_p limited by T_{JMAX}	I _{D, pulse}	200	А
Power Dissipation	T _C = 25°C	PD	335	W
Gate Source Voltage		V _{GS, MAX}	-10/+25	V
Recommended Gate Source Voltage		V _{GS, op}	-5/+20	V
Operating Junction Temperature		TJ	-55 to +150	°C
Storage Temperature Range		T _{STG}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS A T_J = 25°C, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 100 \mu A$	V _{(BR)DSS}	1200			V
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 5mA$	V _{GS(th)}		2.9		V
Gate-Source Threshold Voltage	V_{GS} = V_{DS} , I_{DS} = 5mA, T_J = 150°C	V _{GS(th)}		2.1		V
Zero Gate Voltage Drain Current	V _{DS} = 1200V, V _{GS} = 0V	I _{DSS}		0.7	45	μA
Zero Gate Voltage Drain Current	V _{DS} = 1200V, V _{GS} = 0V, T _J = 150°C	I _{DSS}		5	200	μΑ
Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V$	I _{GSS}			250	nA
Drain-Source On-State Resistance	$V_{GS} = 20V, I_{D} = 50A$	R _{DS(ON)}		32		mΩ
Drain-Source On-State Resistance	V_{GS} = 20V, I_{D} = 50A, T_{J} = 150°C	R _{DS(ON)}		47		mΩ
ltem	Condition	Symbol	Min.	Тур.	Max.	Unit
Dynamic Characteristics						
Input Capacitance	V_{DS} = 800V, V_{GS} = 0V, f = 1MHz, V_{AC} = 25mV	C _{ISS}		4874		рF
Output Capacitance	V_{DS} = 800V, V_{GS} = 0V, f = 1MHz, V_{AC} = 25mV	Coss		220		рF
Reverse Transfer Capacitance	V_{DS} = 800V, V_{GS} = 0V, f = 1MHz, V_{AC} = 25mV	C _{RSS}		33		рF
Internal Gate Resistance	f = 1MHz, V _{AC} = 25mV	R _{G(INT.)}		1.7		Ω
Turn-On Delay Time	V_{DS} = 800V, V_{GS} = -5/+20V, I_{DS} = 50A, $R_{G(ext)}$ = 2.2 Ω , Inductive Load	t _{D(ON)}		30		ns
Rise Time	$\label{eq:VDS} \begin{split} V_{DS} &= 800V, \ V_{GS} = -5/+20V, \ I_{DS} = 50A, \\ R_{G(ext)} &= 2.2\Omega, \ Inductive \ Load \end{split}$	t _R		66		ns
Turn-Off Delay Time	$\label{eq:VDS} \begin{split} V_{\text{DS}} &= 800V, \ V_{\text{GS}} = -5/+20V, \ I_{\text{DS}} = 50A, \\ R_{\text{G}(\text{ext})} &= 2.2\Omega, \ \text{Inductive Load} \end{split}$	t _{D(OFF)}		67		ns
Fall Time	$\label{eq:VDS} \begin{split} V_{\text{DS}} &= 800V, V_{\text{GS}} = -5/+20V, I_{\text{DS}} = 50A, \\ R_{\text{G}(\text{ext})} &= 2.2\Omega, \text{Inductive Load} \end{split}$	t _F		22		ns
Turn-on Switching Energy	$\label{eq:VDS} \begin{split} V_{\text{DS}} &= 800V, V_{\text{GS}} = -5/+20V, I_{\text{DS}} = 50A, \\ R_{\text{G}(\text{ext})} &= 2.2\Omega, \text{Inductive Load} \end{split}$	E _{ON}		1500		μ
Turn-off Switching Energy	$\label{eq:VDS} \begin{split} V_{\text{DS}} &= 800 V, V_{\text{GS}} = -5/+20 V, I_{\text{DS}} = 50 \text{A}, \\ R_{\text{G}(\text{ext})} &= 2.2 \Omega, \text{Inductive Load} \end{split}$	EOFF		780		μ

B1M032120HK A Rev.001 A Date: 30/09/2022 A Page: 2

Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

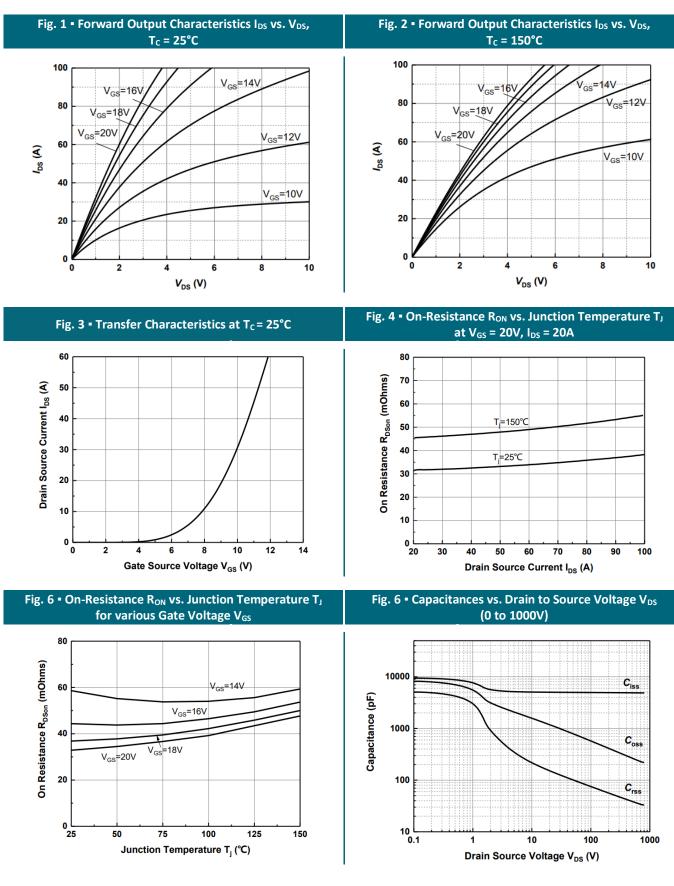
BASiC

MGT **A** Manufacturer Group of Technology

BUILT-IN SIC DIODE CHARACTERISTICS A T_J = 25°C, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Source-Drain Diode						
Inverse Diode Forward Voltage	$V_{GS} = -5V, I_{SD} = 25A$	V_{SD}		4.6		V
Reverse Recovery Time	V _{GS} = -5V, I _{SD} = 50A, V _{DS} = 800V, di/dt = 1500A/μs	t _{RR}		27		ns
Reverse Recovery Charge	V_{GS} = -5V, I_{SD} = 50A, V_{DS} = 800V, di/dt = 1500A/µs	Q _{RR}		418		nC
Peak Reverse Recovery Current	V _{GS} = -5V, I _{SD} = 50A, V _{DS} = 800V, di/dt = 1500A/µs	I _{RRM}		19		А

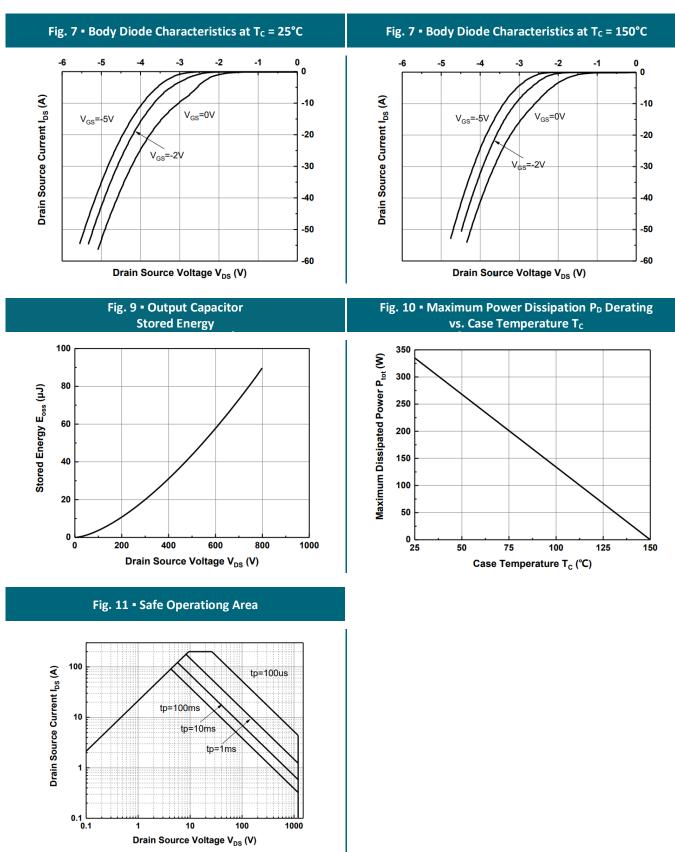
GATE CHARGE CHARACTERISTICS A T_J = 25°C, unless otherwise noted


Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Gate to Source Charge	$V_{DS} = 800V, V_{GS} = -5/+20V, I_{D} = 50A$	Q _{GS}		104		nC
Gate to Drain Charge	$V_{DS} = 800V, V_{GS} = -5/+20V, I_{D} = 50A$	Q_{GD}		93		nC
Total Gate Charge	V_{DS} = 800V, V_{GS} = -5/+20V, I_D = 50A	Q _G		314		nC

THERMAL RESISTANCE PERFORMANCE

Item	Symbol	Min.	Тур.	Max.	Unit
Thermal Resistance, Junction to Case	$R_{\theta,JC}$		0.373		K/W

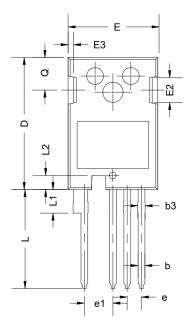
REFERENCE DATA ▲TYPICAL DEVICE PERFORMANCE

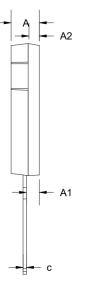

MGT 🔺 Manufacturer Group of Technology

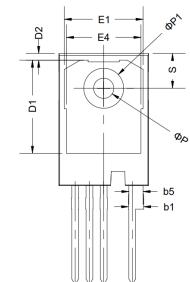
B1M032120HK A Rev.001 Date: 30/09/2022 Page: 4

Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

REFERENCE DATA ▲ TYPICAL DEVICE PERFORMANCE




B1M032120HK A Rev.001 A Date: 30/09/2022 A Page: 5


Copyright by MGT A www.mgt.co.com All rights reserved The information in this document is subject to change without notice.

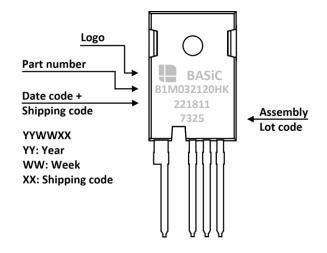
PACKAGE OUTLINE

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
А	4.83	5.02	5.21	E2	3.68	4.40	5.10
A1	2.29	2.41	2.54	E3	1.00	1.45	1.90
A2	1.91	2.00	2.16	E4	12.38	13.26	13.43
b	1.07	1.20	1.33	е		2.54 BSC	
b1	2.39	2.67	2.84	e1		5.08 BSC	
b3	1.07	1.30	1.60	L	17.31	17.57	17.82
B5	2.39	2.53	2.69	L1	3.97	4.19	4.37
С	0.55	0.60	0.68	L2	2.35	2.50	2.65
D	23.30	23.45	23.60	ØР	3.51	3.61	3.65
D1	16.25	16.55	17.65	ØP1		7.19 REF	
D2	0.95	1.19	1.25	Q	5.49	5.79	6.00
E	15.75	15.94	16.13	S	6.04	6.17	6.30
E1	13.10	14.02	14.15				

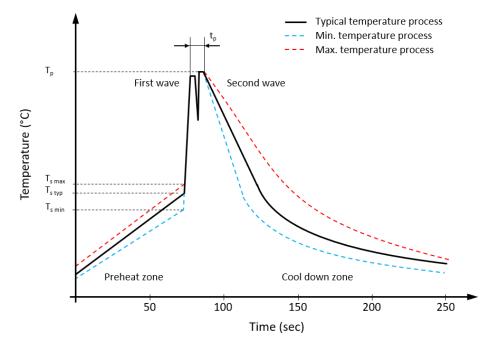
TO-247-4L package ▲ Epoxy meets UL94-V0

ORDERING INFORMATION

Part Number	Package	Packing	Tube Qty.	Inner Box Qty.	Outer Box Qty.
B1M032120HK	TO-247-4L	Tube	30pcs	300pcs	1,800pcs


B1M032120HK 🛦 Rev.001 🛦 Date: 30/09/2022 🛦 Page: 6

Copyright by MGT \blacktriangle www.mgt.co.com \blacktriangle All rights reserved \blacktriangle The information in this document is subject to change without notice.



BASiC

PART MARKING

RECOMMENDED WAVE SOLDERING PROFILE ▲ THT PACKAGE

Classification wave soldering profile ▲ Refer to EN 61760-1: 2006

Profile Features		Value 🛦 Sn-Pb Assembly	Value 🔺 Pb-free Assembly
Preheat temperature min.	T_{smin}	100 °C	100 °C
Preheat temperature typical	T _{s typ}	120 °C	120 °C
Preheat temperature max.	$T_{s max}$	130 °C	130 °C
Preheat time t_s from $T_{s min}$ to $T_{s max}$	ts	70 seconds	70 seconds
Peak temperature	Tp	235 °C to 260 °C	245 °C to 260 °C
Time of actual peak temperature	t _p	Max. 10 seconds Max. 5 second each wave	Max. 10 seconds Max. 5 second each wave
Ramp-down date min.		~ 2 °C/second	~ 2 °C/second
Ramp-down rate typical		~ 3.5 °C/second	~ 3.5 °C/second
Ramp-down rate max.		~ 5 °C/second	~ 5 °C/second
Time 25°C to 25°C		4 minutes	4 minutes
		М	GT A Manufacturer Group of Technology

B1M032120HK A Rev.001 Date: 30/09/2022 Page: 7

Copyright by MGT **A** www.mgt.co.com **A** All rights reserved **A** The information in this document is subject to change without notice.

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <u>www.mgt.co.com.</u>