









# B1M160120HC

#### 1200V A 160mΩ A 20A A SIC MOSFET

SILICON CARBIDE SiC MOSFET ▲ THT type

N-channel enhancement mode

Low on-resistance and capacitance

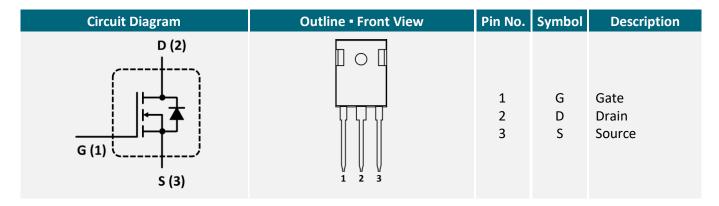
TO-247-3L package ▲ Epoxy meets UL94-V0

Avalanche ruggedness

Especially for higher system efficiency

| Item (T <sub>c</sub> = 25°C, unless otherwise noted) |                        | Characteristics |
|------------------------------------------------------|------------------------|-----------------|
| Operating Temperature Range                          | Tj                     | -55°C to +150°C |
| Storage Temperature Range                            | Ts                     | -55°C to +150°C |
| Drain-Source Voltage                                 | V <sub>DS MAX</sub>    | 1200V           |
| Continuous Drain Current                             | l <sub>D</sub>         | 20A             |
| Drain-Source On-State Resistance Note 1              | R <sub>DS(ON)TYP</sub> | 160mΩ           |
| Reverse Transfer Capacitance Note 2                  | C <sub>RSS</sub>       | 18pF            |
| Power Dissipation                                    | P <sub>D</sub>         | 118W            |

#### **Notes**


1:  $V_{GS} = 20V, I_D = 10A$ 

2:  $V_{DS} = 800V$ ,  $V_{GS} = 0V$ , f = 1MHz,  $V_{AC} = 25mV$ 

#### **APPLICATIONS**

| EV<br>Charging      | Industrial<br>Inverters | Motors &<br>Drives | Power Factor<br>Correction | Renewable<br>Energy | SMPS | UPS |
|---------------------|-------------------------|--------------------|----------------------------|---------------------|------|-----|
| <b>₹</b> ¶ <b>#</b> |                         |                    | PFC                        | *                   |      |     |

#### **PIN DESCRIPTION**





## ABSOLUT MAXIMUM RATINGS ▲ T<sub>C</sub> = 25°C, unless otherwise noted

| ltem                            | Condition                              | Symbol                |             | Unit |
|---------------------------------|----------------------------------------|-----------------------|-------------|------|
|                                 |                                        |                       |             |      |
| Drain-Source Breakdown Voltage  | $V_{GS} = 0V$ , $I_{DS} = 100\mu A$    | $V_{DSMAX}$           | 1200        | V    |
| Continuous Drain Current        | $V_{GS} = 20V, T_C = 25^{\circ}C$      | $I_D$                 | 20          | Α    |
| Continuous Drain Current        | $V_{GS} = 20V, T_C = 100^{\circ}C$     | $I_D$                 | 13          | Α    |
| Pulse Drain Current             | Pulse with $t_p$ limited by $T_{JMAX}$ | I <sub>D, pulse</sub> | 40          | Α    |
| Power Dissipation               | T <sub>C</sub> = 25°C                  | $P_{D}$               | 118         | W    |
| Gate Source Voltage             |                                        | V <sub>GS, MAX</sub>  | -10/+25     | V    |
| Recommended Gate Source Voltage |                                        | $V_{GS, op}$          | -5/+20      | V    |
| Operating Junction Temperature  |                                        | TJ                    | -55 to +150 | °C   |
| Operating Junction Temperature  |                                        | TJ                    | -55 to +150 | °C   |

# **ELECTRICAL CHARACTERISTICS** ▲ T<sub>J</sub> = 25°C, unless otherwise noted

| Item                             | Condition                                                                                        | Symbol               | Min. | Тур. | Max. | Unit |
|----------------------------------|--------------------------------------------------------------------------------------------------|----------------------|------|------|------|------|
| Static Characteristics           |                                                                                                  |                      |      |      |      |      |
| Drain-Source Breakdown Voltage   | $V_{GS} = 0V$ , $I_D = 100 \mu A$                                                                | $V_{(BR)DSS}$        | 1200 |      |      | V    |
| Gate-Source Threshold Voltage    | $V_{GS} = V_{DS}$ , $I_D = 2.5 \text{mA}$                                                        | $V_{GS(th)}$         |      | 2.7  |      | V    |
| Gate-Source Threshold Voltage    | $V_{GS} = V_{DS}$ , $I_D = 2.5 \text{mA}$ , $T_J = 150 ^{\circ} \text{C}$                        | $V_{GS(th)}$         |      | 2.1  |      | V    |
| Zero Gate Voltage Drain Current  | $V_{DS} = 1200V, V_{GS} = 0V$                                                                    | I <sub>DSS</sub>     |      | 0.7  | 45   | μΑ   |
| Zero Gate Voltage Drain Current  | $V_{DS} = 1200V$ , $V_{GS} = 0V$ , $T_J = 150$ °C                                                | $I_{DSS}$            |      | 5    | 200  | μΑ   |
| Gate-Source Leakage Current      | $V_{GS} = 20V$ , $V_{DS} = 0V$                                                                   | I <sub>GSS</sub>     |      |      | 250  | nA   |
| Drain-Source On-State Resistance | $V_{GS} = 20V, I_D = 10A$                                                                        | R <sub>DS(ON)</sub>  |      | 160  |      | mΩ   |
| Drain-Source On-State Resistance | $V_{GS} = 20V$ , $I_D = 10A$ , $T_J = 150$ °C                                                    | R <sub>DS(ON)</sub>  |      | 244  |      | mΩ   |
| Item                             | Condition                                                                                        | Symbol               | Min. | Тур. | Max. | Unit |
| Dynamic Characteristics          |                                                                                                  |                      |      |      |      |      |
| Input Capacitance                | $V_{DS}$ = 800V, $V_{GS}$ = 0V, f = 1MHz, $V_{AC}$ = 25mV                                        | C <sub>ISS</sub>     |      | 1100 |      | pF   |
| Output Capacitance               | $V_{DS}$ = 800V, $V_{GS}$ = 0V, f = 1MHz, $V_{AC}$ = 25mV                                        | Coss                 |      | 73   |      | pF   |
| Reverse Transfer Capacitance     | $V_{DS}$ = 800V, $V_{GS}$ = 0V, f = 1MHz, $V_{AC}$ = 25mV                                        | $C_{RSS}$            |      | 18   |      | pF   |
| Internal Gate Resistance         | $f = 1MHz$ , $V_{AC} = 25mV$                                                                     | R <sub>G(INT.)</sub> |      | 2.8  |      | Ω    |
| Turn-On Delay Time               | $V_{DS}$ = 800V, $V_{GS}$ = -5/+20V, $I_{D}$ = 10A, $R_{G(ext)}$ = 2.2 $\Omega$ , Inductive Load | t <sub>D(ON)</sub>   |      | 15   |      | ns   |
| Rise Time                        | $V_{DS}$ = 800V, $V_{GS}$ = -5/+20V, $I_{D}$ = 10A, $R_{G(ext)}$ = 2.2 $\Omega$ , Inductive Load | $t_R$                |      | 19   |      | ns   |
| Turn-Off Delay Time              | $V_{DS}$ = 800V, $V_{GS}$ = -5/+20V, $I_{D}$ = 10A, $R_{G(ext)}$ = 2.2 $\Omega$ , Inductive Load | t <sub>D(OFF)</sub>  |      | 20   |      | ns   |
| Fall Time                        | $V_{DS}$ = 800V, $V_{GS}$ = -5/+20V, $I_{D}$ = 10A, $R_{G(ext)}$ = 2.2 $\Omega$ , Inductive Load | t <sub>F</sub>       |      | 22   |      | ns   |
| Turn-on Switching Energy         | $V_{DS}$ = 800V, $V_{GS}$ = -5/+20V, $I_{D}$ = 10A, $R_{G(ext)}$ = 2.2 $\Omega$ , Inductive Load | E <sub>ON</sub>      |      | 63   |      | μЈ   |
| Turn-off Switching Energy        | $V_{DS}$ = 800V, $V_{GS}$ = -5/+20V, $I_{D}$ = 10A, $R_{G(ext)}$ = 2.2 $\Omega$ , Inductive Load | E <sub>OFF</sub>     |      | 72   |      | μЈ   |



## BUILT-IN SiC DIODE CHARACTERISTICS A T<sub>J</sub> = 25°C, unless otherwise noted

| Item                          | Condition                                                                   | Symbol           | Min. | Тур. | Max. | Unit |
|-------------------------------|-----------------------------------------------------------------------------|------------------|------|------|------|------|
| Source-Drain Diode            |                                                                             |                  |      |      |      |      |
| Inverse Diode Forward Voltage | $V_{GS} = -5V$ , $I_{SD} = 5A$                                              | $V_{\text{SD}}$  |      | 5.1  |      | V    |
| Reverse Recovery Charge       | $V_{GS} = 5V$ , $I_{SD} = 10A$ , $V_{DS} = 800V$ ,<br>di/dt = 400A/ $\mu$ s | $Q_{RR}$         |      | 82   |      | nC   |
| Peak Reverse Recovery Current | $V_{GS} = 5V$ , $I_{SD} = 10A$ , $V_{DS} = 800V$ ,<br>$di/dt = 400A/\mu s$  | I <sub>RRM</sub> |      | 2.45 |      | Α    |

## GATE CHARGE CHARACTERISTICS ▲ T<sub>J</sub> = 25°C, unless otherwise noted

| ltem                  | Condition                                          | Symbol   | Min. | Тур. | Max. | Unit |
|-----------------------|----------------------------------------------------|----------|------|------|------|------|
|                       |                                                    |          |      |      |      |      |
| Gate to Source Charge | $V_{DS} = 800V$ , $V_{GS} = -5/+20V$ , $I_D = 10A$ | $Q_{GS}$ |      | 12   |      | nC   |
| Gate to Drain Charge  | $V_{DS} = 800V$ , $V_{GS} = -5/+20V$ , $I_D = 10A$ | $Q_{GD}$ |      | 31   |      | nC   |
| Total Gate Charge     | $V_{DS}$ = 800V, $V_{GS}$ = -5/+20V, $I_{D}$ = 10A | $Q_{G}$  |      | 60   |      | nC   |

#### THERMAL RESISTANCE PERFORMANCE

| Item                                 | Symbol | Min. | Тур.  | Max. | Unit |
|--------------------------------------|--------|------|-------|------|------|
|                                      |        |      |       |      |      |
| Thermal Resistance, Junction to Case |        |      | 1.085 |      | K/W  |



#### REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

Fig. 1 • Forward Output Characteristics I<sub>DS</sub> vs. V<sub>DS</sub>, T<sub>J</sub> = 25°C

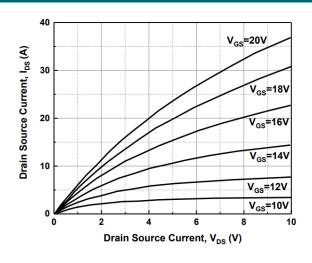



Fig. 2 • Forward Output Characteristics  $I_{DS}$  vs.  $V_{DS}$ ,  $T_C = 150$ °C

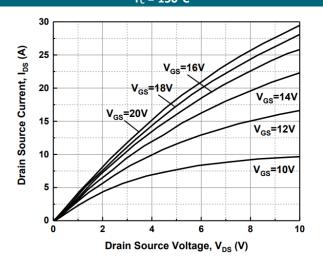



Fig. 3 • Transfer Characteristics for various Junction Temperature T<sub>J</sub>

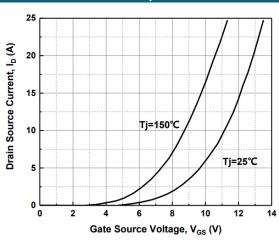



Fig. 4 • On-Resistance R<sub>ON</sub> vs. Gate Voltage V<sub>GS</sub> for various Junction Temperature T<sub>J</sub>

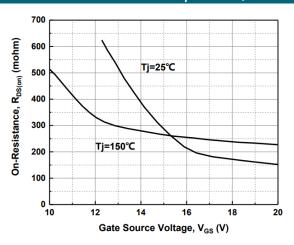



Fig. 5 • On-Resistance  $R_{ON}$  vs. Junction Temperature  $T_J$  at  $V_{GS}$  = 20V,  $I_{DS}$  = 10A

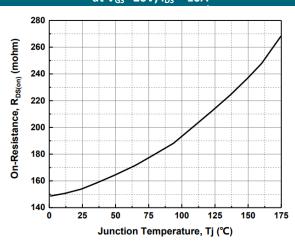
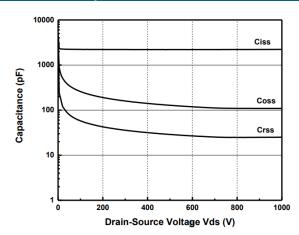




Fig. 6 • Capacitances vs. Drain to Source Voltage V<sub>DS</sub> (0 to 1000V)





#### REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

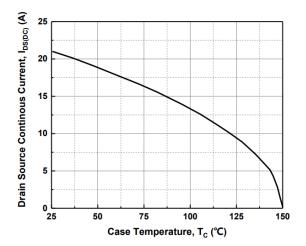



Fig. 8 • Maximum Power Dissipation Derating  $P_D$  vs. Case Temperature  $T_C$ 

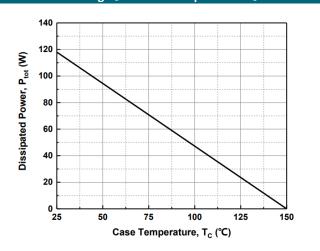
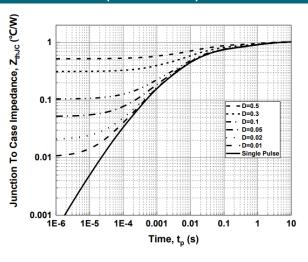
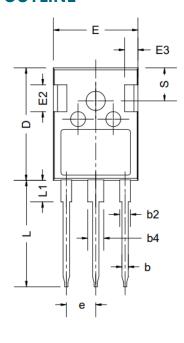
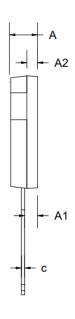
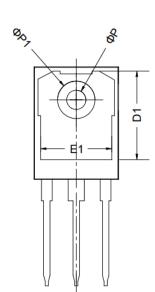



Fig. 9 • Transient Thermal Impedance
(Junction – Case)







Fig. 10 • Safe Operating Area






## **PACKAGE OUTLINE**

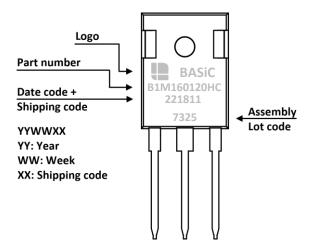




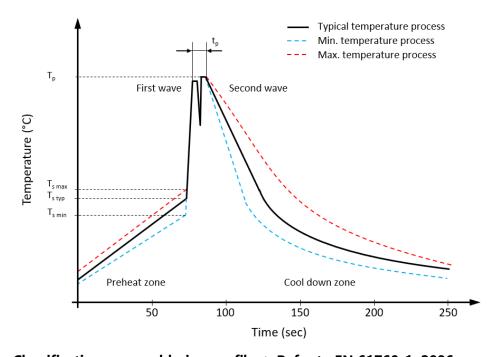




| Sym | Millimeters (Min.) | Millimeters (Typ.) | Millimeters (Max.) |
|-----|--------------------|--------------------|--------------------|
| Α   | 4.80               | 5.00               | 5.20               |
| A1  | 2.21               | 2.41               | 2.59               |
| A2  | 1.85               | 2.00               | 2.15               |
| b   | 1.11               | 1.21               | 1.36               |
| b2  | 1.91               | 2.01               | 2.21               |
| b4  | 2.91               | 3.01               | 3.21               |
| С   | 0.51               | 0.61               | 0.75               |
| D   | 20.80              | 21.00              | 21.30              |
| D1  | 16.25              | 16.55              | 16.85              |
| E   | 15.50              | 15.80              | 16.10              |


| Sym | Millimeters (Min.) | Millimeters (Typ.) | Millimeters (Max.) |  |  |
|-----|--------------------|--------------------|--------------------|--|--|
| E1  | 13.00              | 13.30              | 13.60              |  |  |
| E2  | 4.80               | 5.00               | 5.20               |  |  |
| E3  | 2.30               | 2.50               | 2.70               |  |  |
| e   | 5.44 BSC           |                    |                    |  |  |
| L   | 19.62              | 19.92              | 20.22              |  |  |
| L1  | -                  | -                  | 4.30               |  |  |
| ØΡ  | 3.40               | 3.60               | 3.80               |  |  |
| ØP1 | -                  | -                  | 7.30               |  |  |
| S   | 6.16 BSC           |                    |                    |  |  |

### **ORDERING INFORMATION**


| Pa  | rt Number | Package   | Packing | Tube Qty. | Inner Box Qty. | Outer Box Qty. |
|-----|-----------|-----------|---------|-----------|----------------|----------------|
| B1N | И160120HC | TO-247-3L | Tube    | 30pcs     | 300pcs         | 1.800pcs       |



#### **PART MARKING**



### RECOMMENDED WAVE SOLDERING PROFILE A THT PACKAGE



### Classification wave soldering profile ▲ Refer to EN 61760-1: 2006

| Profile Features                                 |                    | Value <u>▲</u> Sn-Pb Assembly              | Value <u>▲</u> Pb-free Assembly         |
|--------------------------------------------------|--------------------|--------------------------------------------|-----------------------------------------|
| Preheat temperature min.                         | $T_{smin}$         | 100 °C                                     | 100 °C                                  |
| Preheat temperature typical                      | T <sub>s typ</sub> | 120 °C                                     | 120 °C                                  |
| Preheat temperature max.                         | $T_{s max}$        | 130 °C                                     | 130 °C                                  |
| Preheat time $t_s$ from $T_{smin}$ to $T_{smax}$ | ts                 | 70 seconds                                 | 70 seconds                              |
| Peak temperature                                 | Tp                 | 235 °C to 260 °C                           | 245 °C to 260 °C                        |
| Time of actual peak temperature                  | tp                 | Max. 10 seconds<br>Max. 5 second each wave | Max. 10 seconds Max. 5 second each wave |
| Ramp-down date min.                              |                    | ~ 2 °C/second                              | ~ 2 °C/second                           |
| Ramp-down rate typical                           |                    | ~ 3.5 °C/second                            | ~ 3.5 °C/second                         |
| Ramp-down rate max.                              |                    | ~ 5 °C/second                              | ~ 5 °C/second                           |

MGT ▲ Manufacturer Group of Technology



#### **REVISION TABLE**

| Revision | Date       | Status          | Notes               |
|----------|------------|-----------------|---------------------|
| 001      | 30/09/2022 | Initial release | Initial publication |
|          |            |                 |                     |
|          |            |                 |                     |
|          |            |                 |                     |
|          |            |                 |                     |
|          |            |                 |                     |

#### **DISCLAIMER**

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <a href="https://www.mgt.co.com">www.mgt.co.com</a>.