

B2D10065K

650V ▲ 10A ▲ SiC SCHOTTKY DIODE

SILICON CARBIDE SIC SCHOTTKY DIODE ▲ THT type

Excellent surge capability
Easy paralleling due to positive V_F temperature coefficient

TO-220-2L package ▲ Epoxy meets UL94-V0

Temperature independent switching
Ultra-low forward voltage and high surge current

Item (T _C = 25°C, unless otherwise noted)		Characteristics
Operating Temperature Range	T _J	-55°C to +175°C
Storage Temperature Range	Ts	-55°C to +175°C
Repetitive Peak Reverse Voltage	V_{RRM}	650V
Continuous Forward Current at T _C = 160°C	I _F	10A
Total Capacitive Charge (T _J = 25°C)	\mathbf{Q}_{c}	29nC
Capacitance Stored Energy (V _R = 400V)	Ec	7.5µJ
Diode Forward Voltage (T _J = 175°C, I _F = 10A)	V_{F}	1.67V
Power Dissipation	P _{TOT}	163W

APPLICATIONS

EV Charging	Industrial Inverters	Motors & Drives	Power Factor Correction	Renewable Energy	SMPS	UPS
₹ %			PFC	*		

PIN DESCRIPTION

Circuit Diagram	Outline • Front View	Pin No.	Description
Case 0 1 2	Case	1 2	Cathode (Case Backside) Anode

MGT ▲ Manufacturer Group of Technology

ABSOLUT MAXIMUM RATINGS ▲ T_C = 25°C, unless otherwise noted

Item	Condition	Symbol		Unit
Repetitive Peak Reverse Voltage		V_{RRM}	650	V
Non-Repetitive Peak Reverse Voltage		V_{RSM}	650	V
Continuous Forward Current	T _C = 25°C	I _F	39	Α
Continuous Forward Current	$T_C = 160^{\circ}C$	I _F	10	Α
Non-Repetitive Forward Surge Current	T_C = 25°C, t_p = 10ms, Half Sine Wave	I _{FSM}	85	Α
I ² t Value	$T_C = 25^{\circ}C$, $t_p = 10$ ms	∫i²dt	36.12	A^2s
Power Dissipation	T _C = 25°C	P _{TOT}	163	W
Power Dissipation	T _C = 110°C	P_{TOT}	70	W
Operating Junction Temperature		TJ	-55 to +175	°C
Storage Temperature Range		T_{STG}	-55 to +175	°C
TO-220 Mounting Torque	M3 Screw		0.7	Nm

ELECTRICAL CHARACTERISTICS

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Static Characteristics						
DC Blocking Voltage	T _J = 25°C	V_{DC}	650			V
Diode Forward Voltage	$I_F = 10A, T_J = 25^{\circ}C$	V_{F}		1.29		V
Diode Forward Voltage	$I_F = 10A, T_J = 175^{\circ}C$	V_{F}		1.67		V
Reverse Current	$V_R = 650V, T_J = 25^{\circ}C$	I _R		1.5		μΑ
Reverse Current	$V_R = 650V, T_J = 175^{\circ}C$	I _R		15		μΑ
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Dynamic Characteristics						
	$V_R = 400V, T_J = 25^{\circ}C$					
Total Capacitive Charge	$Q_C = \int_0^{V_R} C(V) dV$	Qc		29		nC
Total Capacitance	$V_R = 1V$, $f = 1MHz$, $T_J = 25$ °C	С		457		pF
						_
Total Capacitance	$V_R = 300V, f = 1MHz, T_J = 25^{\circ}C$	С		49.7		pF
Total Capacitance Total Capacitance	$V_R = 300V, f = 1MHz, T_J = 25^{\circ}C$ $V_R = 600V, f = 1MHz, T_J = 25^{\circ}C$	C		49.7 49.3		pF pF

THERMAL RESISTANCE PERFORMANCE

Item	Symbol	Min.	Тур.	Max.	Unit
Thermal Resistance, Junction to Case	$R_{\theta,JC}$		0.926		K/W

REFERENCE DATA A TYPICAL PERFORMANCE

Fig. 1 • Typical Forward Characteristics I_F vs. V_F

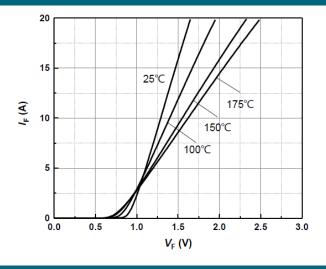


Fig. 2 • Typical Reverse Current I_R as function of Reverse Voltage V_R

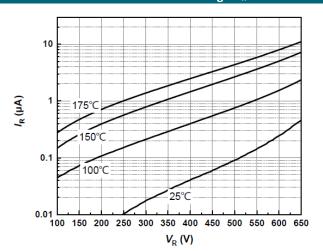


Fig. 3 • Diode Forward Current I_F as function of Case Temperature T_C (D = Duty Cycle)

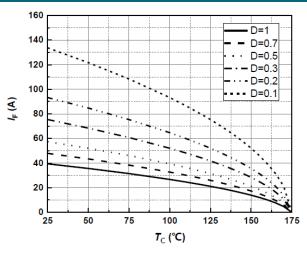


Fig. 4 • Typical Capacitance C as function of Reverse Voltage V_R, C = f(V_R), T_J = 25°C, f = 1MHz

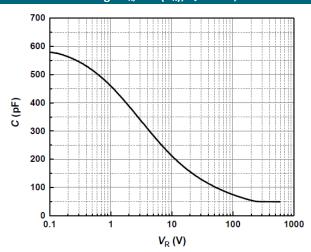


Fig. 5 • Typical Reverse Charge Q_C as function of Reverse Voltage V_R

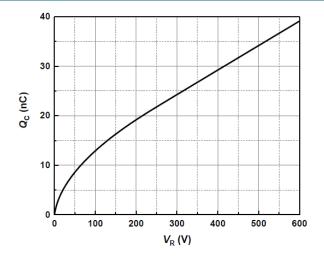
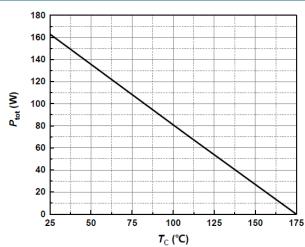
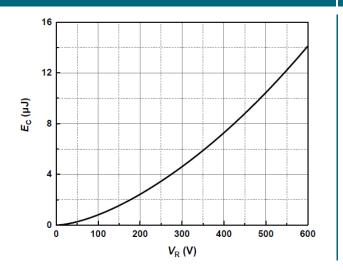
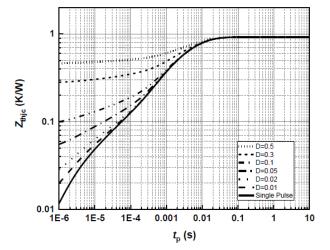
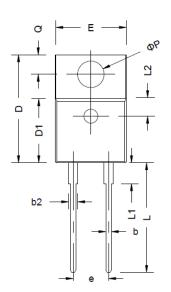



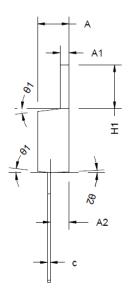
Fig. 6 • Power Dissipation P_{TOT} as function of Case Temperature T_C

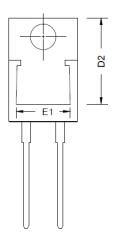
MGT A Manufacturer Group of Technology

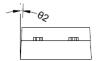
REFERENCE DATA A TYPICAL PERFORMANCE

Fig. 7 - Capacitance Stored Energy

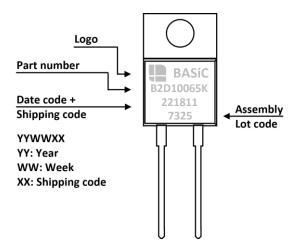

Fig. 8 • Maximum Transient Thermal Impedance, Z_{thjc} = f(t), Parameter: D = t/T



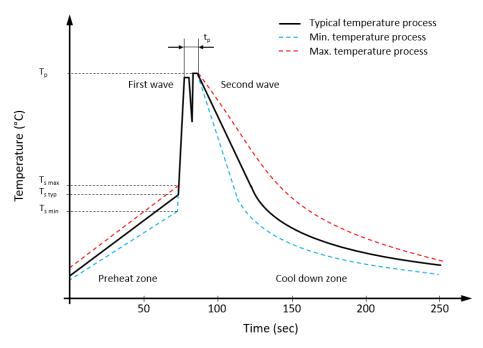


PACKAGE OUTLINE

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
Α	4.37	4.57	4.77
A1	1.22	-	1.40
A2	2.49	2.69	2.89
b	0.75	-	0.96
b2	1.22	-	1.47
С	0.30	-	0.48
D	15.15	15.45	15.75
D1	9.05	9.15	9.25
D2	11.40	-	12.88
Е	9.86	10.16	10.36


Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	
E1	6.86	-	8.89	
e	4.98	5.08	5.18	
H1	6.10	6.30	6.50	
L	12.70	-	13.70	
L1	-	-	4.10	
L2	2.50 REF			
ØΡ	3.70	3.84	3.99	
Q	2.54	-	2.94	
θ1	5°	7°	9°	
θ2	1°	3°	5°	

ORDERING INFORMATION


Part Number	Package	Packing	Tube Qty.	Inner Box Qty.	Outer Box Qty.
B2D10065K	TO-220-2L	Tube	50pcs	500pcs	5,000pcs

PART MARKING

RECOMMENDED WAVE SOLDERING PROFILE & THT PACKAGE

Classification wave soldering profile ▲ Refer to EN 61760-1: 2006

Profile Features		Value ▲ Sn-Pb Assembly	Value ▲ Pb-free Assembly
Preheat temperature min.	T_{smin}	100 °C	100 °C
Preheat temperature typical	T _{s typ}	120 °C	120 °C
Preheat temperature max.	$T_{s max}$	130 °C	130 °C
Preheat time t_s from T_{smin} to T_{smax}	ts	70 seconds	70 seconds
Peak temperature	T_p	235 °C to 260 °C	245 °C to 260 °C
Time of actual peak temperature	t _p	Max. 10 seconds Max. 5 second each wave	Max. 10 seconds Max. 5 second each wave
Ramp-down date min.		~ 2 °C/second	~ 2 °C/second
Ramp-down rate typical		~ 3.5 °C/second	~ 3.5 °C/second
Ramp-down rate max.		~ 5 °C/second	~ 5 °C/second
Time 25°C to 25°C		4 minutes	4 minutes

MGT ▲ Manufacturer Group of Technology

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.