SILICON CARBIDE (SiC) SCHOTTKY DIODE ▲ B2D30065HC1

BASiC

B2D30065HC1

Common cathode circuit configuration

Temperature independent switching

MGT **A** Manufacturer Group of Technology

TO-247-3L package ▲ Epoxy meets UL94-V0

Ultra-low forward voltage and high surge current

650V A 2x15A A SIC SCHOTTKY DIODE

Easy paralleling due to positive V_F temperature coefficient

SILICON CARBIDE SIC SCHOTTKY DIODE ▲ THT type

RoHS

SPECIFICATION

Item (T _c = 25°C, unless otherwise noted)	Characteristics	
Operating Temperature Range	TJ	-55°C to +175°C
Storage Temperature Range	Ts	-55°C to +175°C
Repetitive Peak Reverse Voltage	V _{RRM}	650V
Continuous Forward Current at $T_c = 155^{\circ}C^{\text{Note 1}}$	I _F	15A
Continuous Forward Current at T _c = 155°C Note 2	I _F	30A
Total Capacitive Charge (T _J = 25°C) Note 2	Qc	90nC
Diode Forward Voltage (T _J = 175°C, I_F = 15A) ^{Note 1}	V _F	1.32V
Power Dissipation Note 1	Ρτοτ	217W

Notes

1: Per leg

2: Per device

APPLICATIONS

EV Charging	Industrial Inverters	Motors & Drives	Power Factor Correction	Renewable Energy	SMPS	UPS
€Ո⊧			PFC	*		

PIN DESCRIPTION

Circuit Diagram	Outline - Front View	Pin No.	Description
Backside		1 2 3	Anode Diode 1 Common Cathode (Backside) Anode Diode 2

B2D30065HC1 A Rev.001 Date: 30/09/2022 Page: 1

Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

ABSOLUT MAXIMUM RATINGS A T_c = 25°C, unless otherwise noted

Item	Condition	Symbol		Unit
Repetitive Peak Reverse Voltage		V _{RRM}	650	V
Non-Repetitive Peak Reverse Voltage		V _{RSM}	650	V
Continuous Forward Current	T _c = 25°C	IF	53 Note 1 / 106 Note 2	А
Continuous Forward Current	T _C = 125°C	IF	28 Note 1 / 56 Note 2	А
Continuous Forward Current	T _C = 155°C	IF	15 Note 1 / 30 Note 2	А
Non-Repetitive Forward Surge Current	T_{C} = 25°C, t_{p} = 10ms, Half Sine Wave	I _{FSM}	103 Note 1	А
I ² t Value	T _c = 25°C, t _p = 10ms	∫i²dt	53 Note 1	A ² s
Power Dissipation	T _C = 25°C	P _{TOT}	217 Note 1	W
Power Dissipation	T _C = 110°C	P _{TOT}	94 Note 1	W
Operating Junction Temperature		ТJ	-55 to +175	°C
Storage Temperature Range		T _{STG}	-55 to +175	°C
TO-247 Mounting Torque	M3 Screw		0.7	Nm

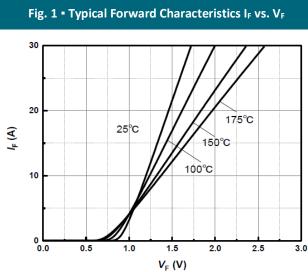
Notes

1: Per leg

2: Per device

ELECTRICAL CHARACTERISTICS ▲ PER LEG

ltem	Condition	Symbol	Min.	Тур.	Max.	Unit
Static Characteristics						
DC Blocking Voltage	T _J = 25°C	V_{DC}	650			V
Diode Forward Voltage	I _F = 15A, T _J = 25°C	V _F		1.32	1.60	V
Diode Forward Voltage	I _F = 15A, T _J = 175°C	VF		1.68	2.40	V
Reverse Current	$V_{R} = 650V, T_{J} = 25^{\circ}C$	I _R		1	110	μΑ
Reverse Current	V _R = 650V, T _J = 175°C	I _R		15	150	μA
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Dynamic Characteristics						
	$V_{R} = 400V, T_{J} = 25^{\circ}C$					
Total Capacitive Charge	$Q_C = \int_0^{V_R} C(V) dV$	Q _C		45		nC
Total Capacitance	$V_{R} = 1V, f = 1MHz, T_{J} = 25^{\circ}C$	С		705		рF
Total Capacitance	V _R = 300V, f = 1MHz, T _J = 25°C	С		78		pF
Total Capacitance	V _R = 600V, f = 1MHz, T _J = 25°C	С		74		pF
Capacitance Stored Energy	V _R = 400V, T _J = 25°C	Ec		11		μ


THERMAL RESISTANCE PERFORMANCE

Item	Symbol	Min.	Тур.	Max.	Unit
Thermal Resistance, Junction to Case, per Leg	$R_{\theta,JC}$		0.69		K/W
Thermal Resistance, Junction to Case, per Device	$R_{\theta,JC}$		0.35		K/W

BASiC

REFERENCE DATA A TYPICAL PERFORMANCE PER LEG

150°

175°(

0.1

Fig. 2 • Typical Reverse Current I_R as

function of Reverse Voltage V_R

1.5 2.0 2.5 3.0 V_F (V)

Fig. 3 • Diode Forward Current I_F as function of Case Temperature T_C (D = Duty Cycle)

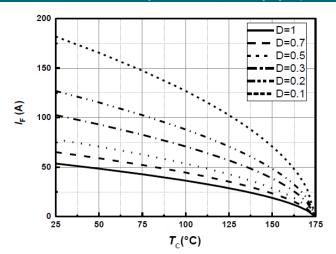


Fig. 4 • Typical Capacitance C as function of Reverse Voltage V_R , C =f(V_R), T_J = 25°C, f = 1MHz

400

*V*_R (V)

100°C

25°C

800

600

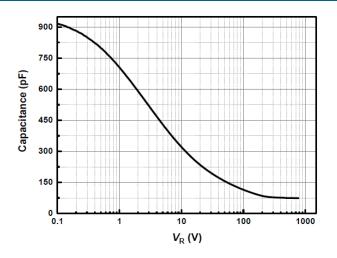


Fig. 5 • Typical Reverse Charge Q_C as function of Reverse Voltage V_R

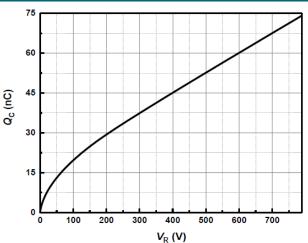
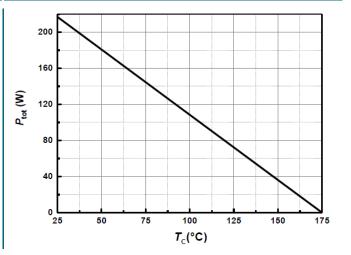
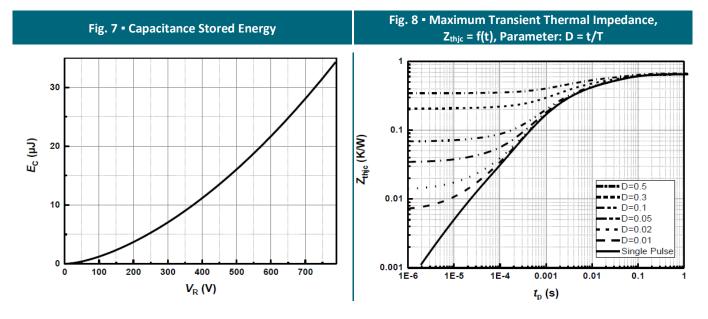
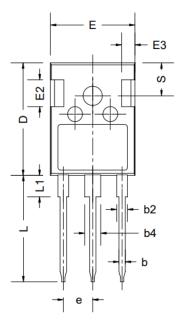



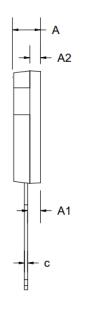
Fig. 6 • Power Dissipation P_{TOT} as function of Case Temperature T_C

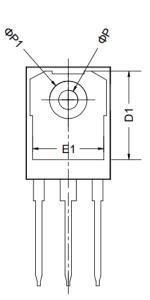
MGT 🔺 Manufacturer Group of Technology


B2D30065HC1 A Rev.001 A Date: 30/09/2022 A Page: 3

Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.


BASiC

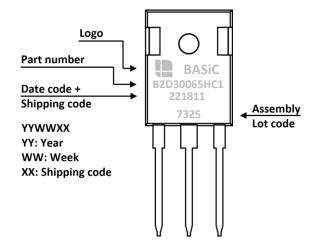

REFERENCE DATA A TYPICAL PERFORMANCE PER LEG



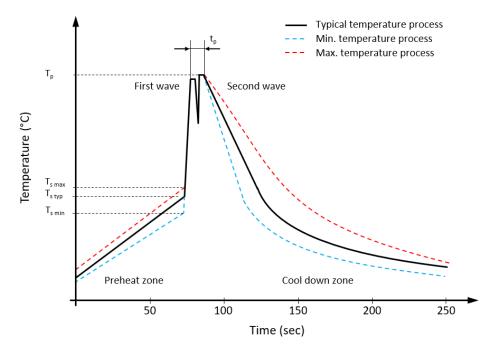
PACKAGE OUTLINE

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
А	4.80	5.00	5.20	E1	13.00	13.30	13.60
A1	2.21	2.41	2.59	E2	4.80	5.00	5.20
A2	1.85	2.00	2.15	E3	2.30	2.50	2.70
b	1.11	1.21	1.36	е		5.44 BSC	
b2	1.91	2.01	2.21	L	19.62	19.92	20.22
b4	2.91	3.01	3.21	L1	-	-	4.30
с	0.51	0.61	0.75	ØР	3.40	3.60	3.80
D	20.80	21.00	21.30	ØP1	-	-	7.30
D1	16.25	16.55	16.85	S		6.16 BSC	
E	15.50	15.80	16.10				

ORDERING INFORMATION


Part Number	Package	Packing	Tube Qty.	Inner Box Qty.	Outer Box Qty.
B2D30065HC1	TO-247-3L	Tube	30pcs	600pcs	3,000pcs

Copyright by MGT **A** www.mgt.co.com **A** All rights reserved **A** The information in this document is subject to change without notice.



BASiC

PART MARKING

RECOMMENDED WAVE SOLDERING PROFILE A THT PACKAGE

Classification wave soldering profile **A** Refer to EN 61760-1: 2006

Profile Features		Value 🔺 Sn-Pb Assembly	Value 🔺 Pb-free Assembly
Preheat temperature min.	T_{smin}	100 °C	100 °C
Preheat temperature typical	T _{s typ}	120 °C	120 °C
Preheat temperature max.	$T_{s max}$	130 °C	130 °C
Preheat time t_s from $T_{s min}$ to $T_{s max}$	ts	70 seconds	70 seconds
Peak temperature	Tp	235 °C to 260 °C	245 °C to 260 °C
Time of actual peak temperature	tp	Max. 10 seconds Max. 5 second each wave	Max. 10 seconds Max. 5 second each wave
Ramp-down date min.		~ 2 °C/second	~ 2 °C/second
Ramp-down rate typical		~ 3.5 °C/second	~ 3.5 °C/second
Ramp-down rate max.		~ 5 °C/second	~ 5 °C/second

B2D30065HC1 A Rev.001 Date: 30/09/2022 Page: 6

MGT **A** Manufacturer Group of Technology

Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <u>www.mgt.co.com.</u>