

CEF20N65SF

650V ▲ 162mΩ ▲ 20ANote 4 ▲ Si MOSFET

SILICON Si MOSFET ▲ THT type
N-channel enhancement mode
UL94V-0 rated flame retardant epoxy

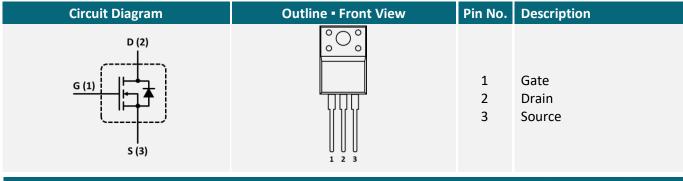
TO220F-3L package ▲ Electrical insulated mounting tab

Super high dense cell density for extremely low R_{DS(ON)}

High power and current handling capability

MAXIMUM RATINGS

Parameter (T_c = 25°C, unless otherwise noted)		Characteristics
Drain-Source Voltage	V _{DS}	650V
Gate-Source Voltage	V _{GS}	±30V
Continuous Drain Current at T _C = 25°C	I _D	20A Note 4
Continuous Drain Current at T _C = 100°C	I _D	12A Note 4
Pulsed Drain Current Note 1	I _{DM} Note 5	80A Note 4
Maximum Power Dissipation at T _C = 25°C	P _D	35W
Power Dissipation Derating above 25°C	ΔP _D	0.28W/°C
Single Pulsed Avalanche Energy Note 6	E _{AS}	486mJ
Single Pulsed Avalanche Current Note 6	I _{AS}	4.5A
Operating and Storage Temperature Range	T _J , T _{STG}	-55°C to +150°C


THERMAL CHARACTERISTICS

Parameter	Symbol	Limit
Thermal Resistance, Junction-to-Case	R _{TH_JC}	3.6°C/W
Thermal Resistance, Junction-to-Ambient	R _{TH JA}	65°C/W

APPLICATIONS

EV Charging	Industrial Inverters	Motors & Drives	Power Factor Correction	Renewable Energy	SMPS	UPS
₹			PFC	*		

PIN DESCRIPTION

ELECTRICAL CHARACTERISTICS ▲ T_C = 25°C, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 250\mu A$	BV_{DSS}	650			V
Zero Gate Voltage Drain Current	$V_{DS} = 650V, V_{GS} = 0V$	I _{DSS}			5	μΑ
Gate Body Leakage Current, Forward	$V_{GS} = 30V$, $V_{DS} = 0V$	I_{GSSF}			100	nA
Gate Body Leakage Current, Reverse	$V_{GS} = -30V, V_{DS} = 0V$	I_{GSSR}			-100	nA
On Characteristics Note 2						
Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_{D} = 250 \mu A$	$V_{GS(th)}$	3		5	V
Static Drain-Source On-Resistance	$V_{GS} = 10V, I_D = 20A$	R _{DS(ON)}		162	190	mΩ
Dynamic Characteristics Note 3						
Input Capacitance	$V_{DS} = 150V$, $V_{GS} = 0V$, $f = 1MHz$	C _{ISS}		1630		pF
Output Capacitance	$V_{DS} = 150V, V_{GS} = 0V, f = 1MHz$	Coss		85		pF
Reverse Transfer Capacitance	$V_{DS} = 150V$, $V_{GS} = 0V$, $f = 1MHz$	C _{RSS}		10		pF
Switching Characteristics Note 3						
Turn-On Delay Time	V_{DD} = 520V, V_{GS} = 10V, I_{D} = 10A, $R_{G(ext)}$ = 6Ω	t _{D(ON)}		34		ns
Turn-On Rise Time	V_{DD} = 520V, V_{GS} = 10V, I_{D} = 10A, $R_{G(ext)}$ = 6Ω	t_R		9		ns
Turn-Off Delay Time	V_{DD} = 520V, V_{GS} = 10V, I_D = 10A, $R_{G(ext)}$ = 6Ω	t _{D(OFF)}		66		ns
Turn-Off Fall Time	V_{DD} = 520V, V_{GS} = 10V, I_D = 10A, $R_{G(ext)}$ = 6Ω	t _F		7		ns
Total Gate Charge	$V_{DS} = 520V$, $V_{GS} = 10V$, $I_D = 10A$	Q_{G}		43		nC
Gate Source Charge	$V_{DS} = 520V$, $V_{GS} = 10V$, $I_D = 10A$	Q_{GS}		10		nC
Gate Drain Charge	$V_{DS} = 520V$, $V_{GS} = 10V$, $I_D = 10A$	Q_{GD}		18		nC
Drain-Source Diode Characteristics a	nd Maximum Ratings					
Drain-Source Diode Forward Current		I _S			8	Α
Drain-Source Diode Forward Voltage Note 2	$V_{GS} = 0V$, $I_S = 8A$	V_{SD}			1.5	V
Reverse Recovery Time	$I_D = 20A$, di/dt = $100A/\mu s$	t _{RR}		92		ns
Reverse Recovery Charge	$I_D = 20A$, di/dt = $100A/\mu s$	Q_{RR}		0.34		μC
Peak Reverse Recovery Current	$I_D = 20A$, di/dt = $100A/\mu s$	I_{RR}		6.9		Α

Notes

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature
- 2: Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 3: Guaranteed by design, not subject to production testing.
- 4: Limited only by maximum temperature allowed.
- 5: Pulse width limited by safe operating area.
- 5: L = 48mH, I_{AS} = 4.5A, V_{DD} = 50V, R_G = 25Ω, Starting T_J = 25°C

REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

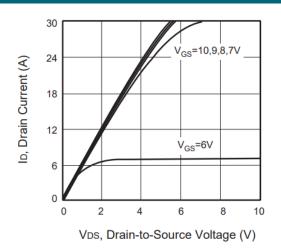


Fig. 2 • Transfer Characteristics

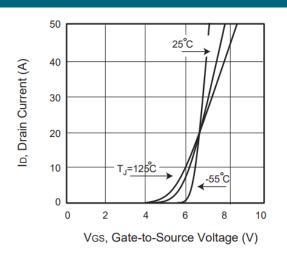


Fig. 3 • Capacitance

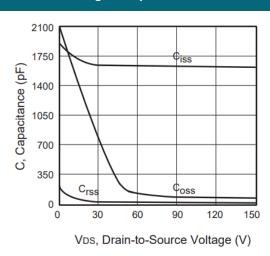


Fig. 4 • On-Resistance Variation with Temperature

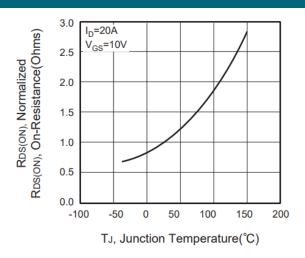


Fig. 5 • Gate Threshold Variation with Temperature

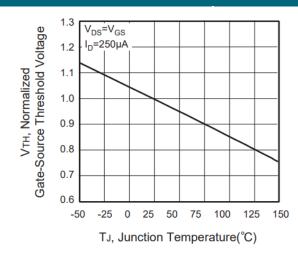
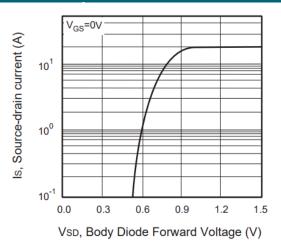



Fig. 6 • Body Diode Forward Voltage Variation with Source Current

MGT ▲ Manufacturer Group of Technology

REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

Fig. 7 • Gate Charge

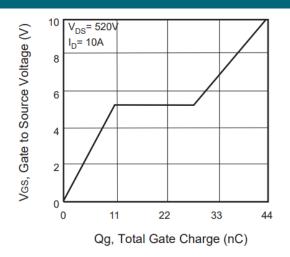


Fig. 8 • Maximum Safe Operating Area

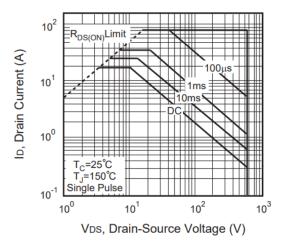
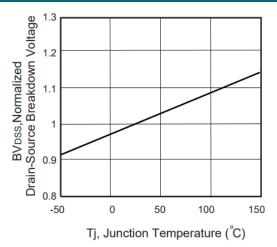
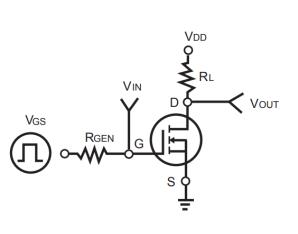
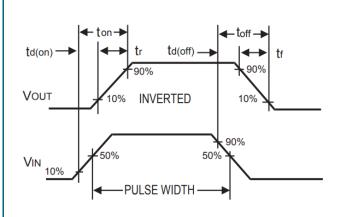
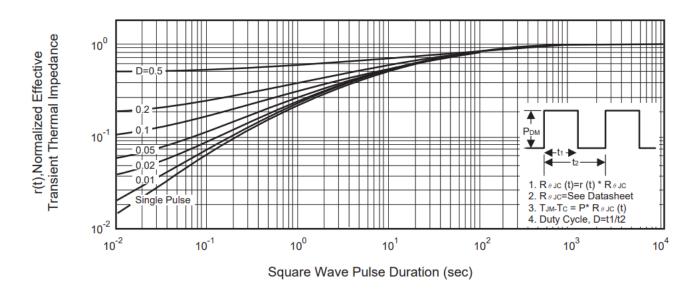
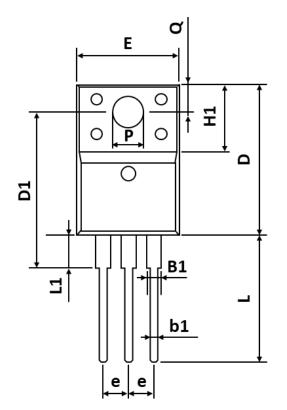



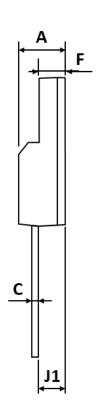
Fig. 9 - Breakdown Voltage Variation vs. Temperature

16. 5 Dicardovin Voltage Variation V3. Temperature

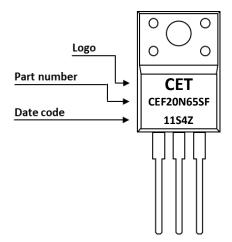




Fig. 11 • Switching Waveforms


REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

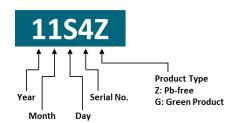

Fig. 12 • Normalized Thermal Transient Impedance Curve

PACKAGE OUTLINE


Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
Α	4.500	-	5.000
B1	1.000	-	1.500
b1	0.700	-	0.950
С	0.420	-	0.700
D	15.670	-	16.070
D1	14.800	-	16.000
Е	9.960	-	10.360
е	2.340	-	2.740
F	2.340	-	2.740
H1	6.480	-	6.900
J1	2.550	-	2.950
L	12.080	-	13.480
L1	2.230	-	3.650
Q	3.100	-	3.500
Р	2.980	-	3.380

ORDERING INFORMATION

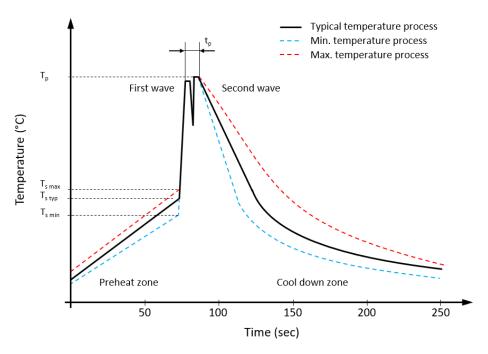
Part Number	Package	Packing	Tube Qty.	Inner Box Qty.	Outer Box Qty.
CEF20N65SF	TO-220F-3L	Tube	50pcs	1,000pcs	4,000pcs



PART MARKING

DATE CODE

Example: 11S4Z



Coding list for "Day"

RECOMMENDED WAVE SOLDERING PROFILE A THT PACKAGE

Classification wave soldering profile ▲ Refer to EN 61760-1: 2006

Profile Features		Value ▲ Sn-Pb Assembly	Value ▲ Pb-free Assembly
Preheat temperature min.	$T_{s min}$	100 °C	100 °C
Preheat temperature typical	T _{s typ}	120 °C	120 °C
Preheat temperature max.	T _{s max}	130 °C	130 °C
Preheat time t_s from T_{smin} to T_{smax}	ts	70 seconds	70 seconds
Peak temperature	Tp	235 °C to 260 °C	245 °C to 260 °C
Time of actual peak temperature	t _p	Max. 10 seconds Max. 5 second each wave	Max. 10 seconds Max. 5 second each wave
Ramp-down date min.		~ 2 °C/second	~ 2 °C/second
Ramp-down rate typical		~ 3.5 °C/second	~ 3.5 °C/second
Ramp-down rate max.		~ 5 °C/second	~ 5 °C/second
Time 25°C to 25°C		4 minutes	4 minutes

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.