SILICON (Si) POWER MOSFET A CEM1008SL

CEM1008SL

100V ▲ 100mΩ ▲ 2.9A ▲ Dual Si MOSFET

SILICON Si MOSFET ▲ SMD type Dual N-channel enhancement mode UL94V-0 rated flame retardant epoxy SO8 package ▲ MSL 3 Super high dense cell density for extremely low R_{DS(ON)} High power and current handling capability

HALOGEN

FREE

RoHS

MAXIMUM RATINGS

Parameter ($T_A = 25^{\circ}C$, unless otherwise noted)	Characteristics	
Drain-Source Voltage	V _{DS}	100V
Gate-Source Voltage	V _{GS}	±16V
Continuous Drain Current	Ι _D	2.9A
Pulsed Drain Current Note 1	I _{DM}	11.6A
Maximum Power Dissipation	PD	2W
Operating and Storage Temperature Range	T _J , T _{STG}	-55°C to +150°C

THERMAL CHARACTERISTICS

Parameter	Symbol	Limit
Thermal Resistance, Junction-to-Ambient Note 2	R _{th_ja}	62.5°C/W

APPLICATIONS

Audio	DC	Industrial	Power over	Synchronous
Amplifier	Fan	Control	Ethernet	Rectification
()			PoE	

PIN DESCRIPTION

Circuit Diagram	Outline • Top View	Pin No.	Description
$\begin{array}{c} D_{1}(7,8) \\ \hline \\ G_{1}(2) \\ \hline \\ S_{1}(1) \end{array} \qquad \begin{array}{c} D_{2}(5,6) \\ \hline \\ G_{2}(4) \\ \hline \\ S_{2}(3) \end{array}$		1 2 3 4 5 6 7 8	Source MOSFET 1 Gate MOSFET 1 Source MOSFET 2 Gate MOSFET 2 Drain MOSFET 2 Drain MOSFET 2 Drain MOSFET 1 Drain MOSFET 1

CEM1008SL Rev.001 Date: 30/09/2022 Page: 1

MGT 🔺 Manufacturer Group of Technology

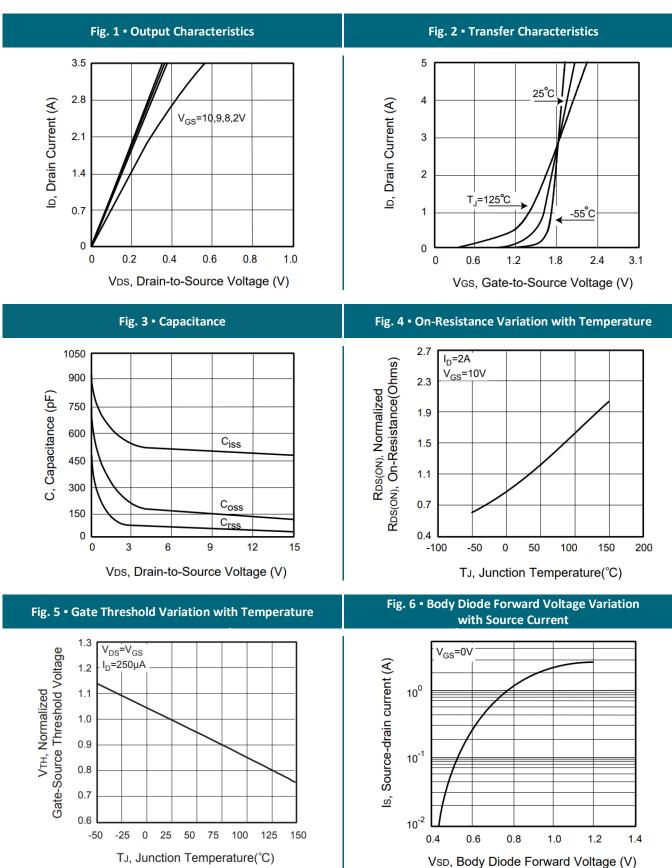
Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

CET MOS

ELECTRICAL CHARACTERISTICS A T_A = 25°C, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	BV _{DSS}	100			V
Zero Gate Voltage Drain Current	V_{DS} = 100V, V_{GS} = 0V	I _{DSS}			1	μA
Gate Body Leakage Current, Forward	V_{GS} = 16V, V_{DS} = 0V	I _{GSSF}			100	nA
Gate Body Leakage Current, Reverse	$V_{GS} = -16V, V_{DS} = 0V$	I _{GSSR}			-100	nA
On Characteristics Note 3						
Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	$V_{GS(th)}$	0.4		1.4	V
Static Drain-Source On-Resistance	$V_{GS} = 10V$, $I_D = 2A$	R _{DS(ON)}		100	120	mΩ
Static Drain-Source On-Resistance	$V_{GS} = 5V$, $I_D = 2A$	R _{DS(ON)}		105	130	mΩ
Static Drain-Source On-Resistance	$V_{GS} = 3V$, $I_D = 1A$	R _{DS(ON)}		112	145	mΩ
Dynamic Characteristics Note 4						
Input Capacitance	V_{DS} = 15V, V_{GS} = 0V, f = 1MHz	C _{ISS}		475		pF
Output Capacitance	V_{DS} = 15V, V_{GS} = 0V, f = 1MHz	Coss		120		pF
Reverse Transfer Capacitance	V_{DS} = 15V, V_{GS} = 0V, f = 1MHz	C _{RSS}		40		рF
Switching Characteristics Note 4						
Turn-On Delay Time	V_{DD} = 50V, V_{GS} = 10V, I_{D} = 1A, $R_{\text{G}(\text{ext})}$ = 6 Ω	t _{D(ON)}		9		ns
Turn-On Rise Time	V_{DD} = 50V, V_{GS} = 10V, I_{D} = 1A, $R_{G(\text{ext})}$ = 6 Ω	t _R		4		ns
Turn-Off Delay Time	V_{DD} = 50V, V_{GS} = 10V, I_{D} = 1A, $R_{G(\text{ext})}$ = 6 Ω	t _{D(OFF)}		46		ns
Turn-Off Fall Time	V_{DD} = 50V, V_{GS} = 10V, I_{D} = 1A, $R_{G(ext)}$ = 6 Ω	t _F		17		ns
Total Gate Charge	V_{DS} = 80V, V_{GS} = 4.5V, I_{D} = 2A	Q _G		9.8		nC
Gate Source Charge	V_{DS} = 80V, V_{GS} = 4.5V, I_{D} = 2A	Q _{GS}		0.6		nC
Gate Drain Charge	V_{DS} = 80V, V_{GS} = 4.5V, I_{D} = 2A	\mathbf{Q}_{GD}		4.5		nC
Drain-Source Diode Characteristics a	nd Maximum Ratings					
Drain-Source Diode Forward Current Note 2		Is			1.6	А
Drain-Source Diode Forward Voltage ^{Note 3}	$V_{GS} = 0V$, $I_S = 1A$	V_{SD}			1.2	V

Notes


- 1: Repetitive Rating: Pulse width limited by maximum junction temperature
- 2: Surface Mounted on FR4 Board, $t \le 10$ sec
- 3: Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- 4: Guaranteed by design, not subject to production testing.

MGT **A** Manufacturer Group of Technology

CET MOS

REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

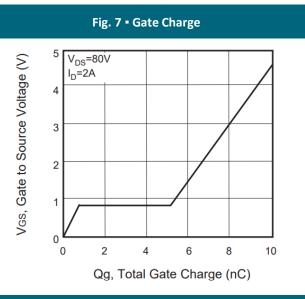


Fig. 9 - Breakdown Voltage Variation vs. Temperature

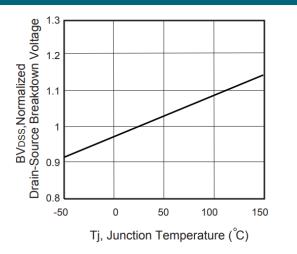


Fig. 10 - Switching Test Circuit

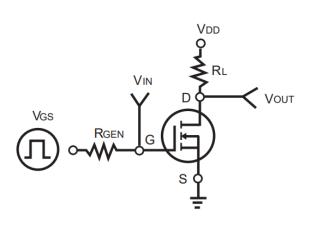
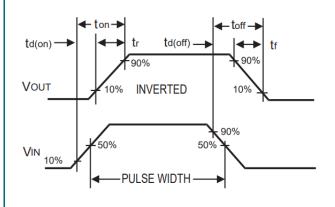
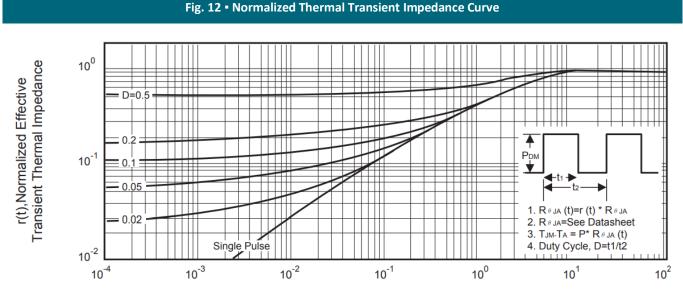



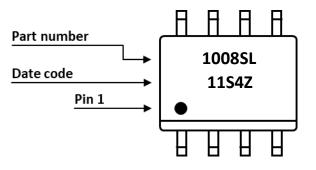
Fig. 8 • Maximum Safe Operating Area 10² R_{DS(ON)}Limit ID, Drain Current (A) 10¹ 10ms 100ms 10⁰ 10 T_A=25℃ T_=150°C Single Pulse 10⁻² 10⁻¹ 10⁰ 10¹ 10^{2} 10^{3} VDS, Drain-Source Voltage (V)

Fig. 11 • Switching Waveforms

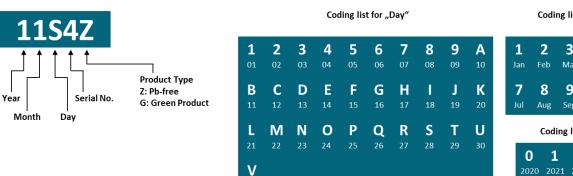
MGT 🔺 Manufacturer Group of Technology


CEM1008SL ▲ Rev.001 ▲ Date: 30/09/2022 ▲ Page: 4

Copyright by MGT **A** www.mgt.co.com **A** All rights reserved **A** The information in this document is subject to change without notice.


CET MOS

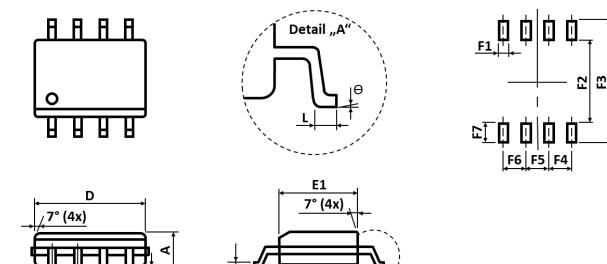
REFERENCE DATA ▲ TYPICAL DEVICE PERFORMANCE


Square Wave Pulse Duration (sec)

PART MARKING

DATE CODE

Example: 11S4Z



• Detail "A"

PACKAGE OUTLINE AND RECOMMENDED PAD LAYOUT

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
А	1.350	-	1.750	E1	3.700		4.060
A1	0.100	-	0.250	eB	5.800		6.200
В	0.310	-	0.510	е		1.270	
С	0.170	-	0.250	L	0.400		0.950
D	4.690	-	5.000	θ	0°	-	8°
Sym	Millimeters	Millimeters		Sym	Millimeters	Millimeters	Millimeters

eВ

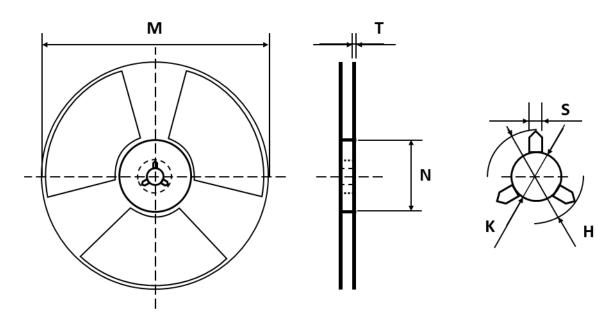
Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	I
Г1		0 5 0 0				1 270		
F1	-	0.500	-	F5	-	1.270	-	
F2	-	4.250	-	F6	-	1.270	-	
F3	-	6.250	-	F7	-	1.000	-	
F4	-	1.270	-					

Notes: 1. The suggested land pattern dimensions have been provided for reference only. 2. For further information, please reference document IPC-7351A.

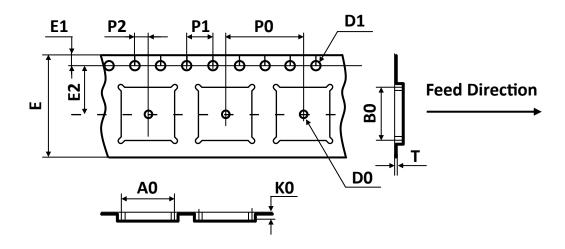
C

ORDERING INFORMATION

В


A1

Part Number	Package	Packing	Reel Qty.	Inner Box Qty.	Outer Box Qty.
CEM1008SL	SO8	13" Reel	2,500pcs	5,000pcs	40,000pcs

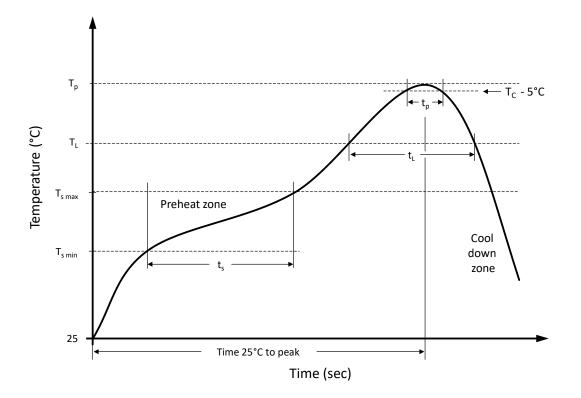


REEL DIMENSIONS All dimensions in mm

Tape Size	Reel Size	М	Ν	т	Н	К	S
12mm	Ø330	Ø330.00	Ø100.00	2.20	20.00	13.20	3.00
1211111	\$550	±2.00	±0.50	±0.20	±1.00	±0.20	±1.00

TAPE DIMENSIONS All dimensions in mm

Package	A0	B0	К0	D0	D1	E	E1	E2	P0	P1	P2	т
SO8	6.50	5.30	2.05	1.50	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.25
308	±0.10	±0.10	±0.15	±0.10	±0.10	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05	±0.02


Note: All dimensions meet EIA-481-D requirements.

CEM1008SL ▲ Rev.001 ▲ Date: 30/09/2022 ▲ Page: 7

RECOMMENDED REFLOW SOLDERING PROFILE

Recommended reflow soldering conditions ▲ **Refer to JEDEC J-STD-020E**

Profile Features		Sn-Pb Eutetic Assembly	Pb-Free Assembly
Preheat temperature min.	T_{smin}	100 °C	150 °C
Preheat temperature max.	$T_{s max}$	150 °C	200 °C
Preheat time t_s from $T_{s min}$ to $T_{s max}$	ts	120 seconds	120 seconds
Ramp-up rate (T _L to T _p)		max. 3 °C/second	max. 3 °C/second
Liquidous temperature	TL	183 °C	217 °C
Time t_L maintained above T_L	t∟	150 seconds max.	150 seconds max.
Peak package body temperature	Tp	235°C	260°C
Timeframe of within 5°C below and up to max actual peak body temperature	t _p	20 seconds max.	30 seconds max.
Ramp-down rate (T_L to T_p)		max. 6 °C/second	max. 6 °C/second
Time 25°C to peak temperature		max. 6 minutes	max. 8 minutes

Copyright by MGT **A** www.mgt.co.com **A** All rights reserved **A** The information in this document is subject to change without notice.

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <u>www.mgt.co.com.</u>