

CET05N10SL

$100 \mathrm{~V} \Delta 98 \mathrm{~m} \Omega \triangle 3.5 \mathrm{~A} \triangle$ Si MOSFET

SILICON Si MOSFET \triangle SMD type
N -channel enhancement mode UL94V-O rated flame retardant epoxy SOT223 package $\mathbf{\Delta}$ MSL 3

Parameter $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)	Characteristics	
Drain-Source Voltage	V_{DS}	100 V
Gate-Source Voltage	V_{GS}	$\pm 16 \mathrm{~V}$
Continuous Drain Current	I_{D}	3.5 A
Pulsed Drain Current Note 1	I_{DM}	14 A
Maximum Power Dissipation	P_{D}	3 W
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Parameter	Symbol	Limit
Thermal Resistance, Junction-to-Case Note 2	R $_{\text {TH_」C }}$	$42^{\circ} \mathrm{C} / \mathrm{W}$

APPLICATIONS

Battery Management Systems	E-Bike	Industrial Control	Power Inverter	UPS

PIN DESCRIPTION

Circuit Diagram	Outline - Top View	Pin No.	Description
		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Drain Source Drain Gate

SILICON (Si) POWER MOSFET \triangle CET05N10SL

ELECTRICAL CHARACTERISTICS $\triangle \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	BV ${ }_{\text {DSS }}$	100			V
Zero Gate Voltage Drain Current	$V_{D S}=100 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}$	$\mathrm{I}_{\text {DSS }}$			1	$\mu \mathrm{A}$
Gate Body Leakage Current, Forward	$V_{G S}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$I_{\text {GSSF }}$			100	nA
Gate Body Leakage Current, Reverse	$V_{G S}=-16 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\text {GSSR }}$			-100	nA
On Characteristics ${ }^{\text {Note } 3}$						
Gate Threshold Voltage	$V_{G S}=V_{D S}, I_{D}=250 \mu \mathrm{~A}$	$\mathrm{V}_{\text {GS(th) }}$	0.4		1.4	V
Static Drain-Source On-Resistance	$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$	R $\mathrm{DS}^{(O N)}$		98	120	$m \Omega$
Static Drain-Source On-Resistance	$\mathrm{V}_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$	$\mathrm{R}_{\text {DS(ON) }}$		103	130	$m \Omega$
Static Drain-Source On-Resistance	$V_{G S}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}$	R ${ }_{\text {DS(ON) }}$		120	165	$m \Omega$
Dynamic Characteristics Note 4						
Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{Cl}_{\text {ISS }}$		535		pF
Output Capacitance	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Coss		160		pF
Reverse Transfer Capacitance	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {RSS }}$		45		pF
Switching Characteristics Note 4						
Turn-On Delay Time	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \mathrm{R}_{\mathrm{G}(\mathrm{ext})}=6 \Omega$	$t_{\text {D }}(\mathrm{ON})$		8		ns
Turn-On Rise Time	$V_{D D}=50 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \mathrm{R}_{\mathrm{G} \text { (ext) }}=6 \Omega$	t_{R}		4		ns
Turn-Off Delay Time	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \mathrm{R}_{\mathrm{G} \text { (ext) }}=6 \Omega$	$\mathrm{t}_{\mathrm{D} \text { (OFF) }}$		35		ns
Turn-Off Fall Time	$V_{D D}=50 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \mathrm{R}_{\mathrm{G} \text { (ext) }}=6 \Omega$	t_{F}		4		ns
Total Gate Charge	$V_{D S}=80 \mathrm{~V}, \mathrm{~V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	Q_{G}		9.6		nC
Gate Source Charge	$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	$\mathrm{Q}_{\text {GS }}$		0.9		nC
Gate Drain Charge	$V_{D S}=80 \mathrm{~V}, \mathrm{~V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	Q_{GD}		3.9		nC
Drain-Source Diode Characteristics and Maximum Ratings						
Drain-Source Diode Forward Current Note 3		Is			2.5	A
Drain-Source Diode Forward Voltage ${ }^{\text {Note } 3}$	$V_{G S}=0 V, I_{S}=2 A$	$\mathrm{V}_{\text {SD }}$			1.2	V

Notes

1: Repetitive Rating: Pulse width limited by maximum junction temperature
2: Surface Mounted on FR4 Board, $t \leq 10$ sec
3: Pulse Test: Pulse Width $\leq \mathbf{3 0 0 \mu s}$, Duty Cycle $\leq \mathbf{2 \%}$.
4: Guaranteed by design, not subject to production testing.

REFERENCE DATA \triangle TYPICAL DEVICE PERFORMANCE

Fig. 2 - Transfer Characteristics

Vgs, Gate-to-Source Voltage (V)

Fig. 3 - Capacitance

VDs, Drain-to-Source Voltage (V)

Fig. 4 - On-Resistance Variation with Temperature

Fig. 6 - Body Diode Forward Voltage Variation with Source Current

Vsd, Body Diode Forward Voltage (V)

REFERENCE DATA ^ TYPICAL DEVICE PERFORMANCE

Fig. 9 - Breakdown Voltage Variation vs. Temperature

IJ, Junction Temperature (${ }^{\circ} \mathrm{C}$)

Fig. 8 - Maximum Safe Operating Area

Fig. 10 - Switching Test Circuit

SILICON (Si) POWER MOSFET \triangle CET05N10SL

REFERENCE DATA ^ TYPICAL DEVICE PERFORMANCE

Fig. 12 - Normalized Thermal Transient Impedance Curve

PART MARKING

DATE CODE

Example: 11S4Z

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\mathbf{A}
01	02	03	04	05	06	07	08	09	10
\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}
11	12	13	14	15	16	17	18	19	20
\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}
21	22	23	24	25	26	27	28	29	30
\mathbf{V}									
31									

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$							
Jan	Feb	Mar	Apr	May	Jun							
$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\mathbf{A}	\mathbf{B}	C							
Jul	Aug	Sep	Oct	Nov	Dec	$	$	Coding list for „Year"				
:---:	:---:	:---:	:---:	:---:								
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$								
2020	2021	2022	2023	2024								
$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$								
2025	2026	2027	2028	2029								

SILICON (Si) POWER MOSFET \triangle CET05N10SL

PACKAGE OUTLINE AND RECOMMENDED PAD LAYOUT

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Sym } & \begin{array}{c}\text { Millimeters } \\ \text { (Min.) }\end{array} & \begin{array}{c}\text { Millimeters } \\ \text { (Typ.) }\end{array} & \begin{array}{c}\text { Millimeters } \\ \text { (Max.) }\end{array} & & \text { Sym } & \begin{array}{c}\text { Millimeters } \\ \text { (Min.) }\end{array} & \begin{array}{c}\text { Millimeters } \\ \text { (Typ.) }\end{array} & \begin{array}{c}\text { Millimeters } \\ \text { (Max.) }\end{array} \\ \hline \text { A } & 1.500 & - & 1.700 & \text { e1 } & & 4.600 \text { TYP }\end{array}\right]$

Notes: 1. The suggested land pattern dimensions have been provided for reference only.
2. For further information, please reference document IPC-7351A.

ORDERING INFORMATION

Part Number	Package	Packing	Reel Qty.	Inner Box Qty.	Outer Box Qty.
CET05N10SL	SOT223	7" Reel	2,500 pcs	5,000 pcs	15,000pcs

REEL DIMENSIONS $\boldsymbol{\wedge}$ All dimensions in mm

Tape Size	Reel Size	\mathbf{M}	\mathbf{N}	\mathbf{T}	\mathbf{H}	K	S
8 mm	$\varnothing 180$	$\emptyset 178.00$	$\varnothing 54.00$	1.20	20.00	13.30	3.00
		± 1.00	± 0.50	± 0.20	± 1.00	± 0.30	± 1.00

TAPE DIMENSIONS \triangle All dimensions in mm

Package	A0	B0	K0	D0	D1	E	E1	E2	P0	P1	P2	T
SOT223	2.40	2.60	1.20	1.00	1.50	8.00	1.75	3.50	4.00	4.00	2.00	0.20
	± 0.10	± 0.05	± 0.02									

Note: All dimensions meet EIA-481-D requirements.

SILICON (Si) POWER MOSFET \triangle CET05N10SL

RECOMMENDED REFLOW SOLDERING PROFILE

Recommended reflow soldering conditions \triangle Refer to JEDEC J-STD-020E

Profile Features		Sn-Pb Eutetic Assembly	Pb-Free Assembly
Preheat temperature min.	$T_{\text {s min }}$	$100^{\circ} \mathrm{C}$	$150{ }^{\circ} \mathrm{C}$
Preheat temperature max.	$\mathrm{T}_{\text {s max }}$	$150{ }^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
Preheat time $\mathrm{t}_{\text {s }}$ from $\mathrm{T}_{\text {s min }}$ to $\mathrm{T}_{\text {s max }}$	$\mathrm{t}_{\text {s }}$	120 seconds	120 seconds
Ramp-up rate (T_{L} to T_{p})		max. $3^{\circ} \mathrm{C} /$ second	max. $3^{\circ} \mathrm{C} /$ second
Liquidous temperature	T_{L}	$183{ }^{\circ} \mathrm{C}$	$217{ }^{\circ} \mathrm{C}$
Time t_{L} maintained above T_{L}	t_{L}	150 seconds max.	150 seconds max.
Peak package body temperature	T_{p}	$235^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Timeframe of within $5^{\circ} \mathrm{C}$ below and up to max actual peak body temperature	t_{p}	20 seconds max.	30 seconds max.
Ramp-down rate (L_{L} to T_{p})		max. $6^{\circ} \mathrm{C} /$ second	max. $6^{\circ} \mathrm{C} /$ second
Time $25^{\circ} \mathrm{C}$ to peak temperature		max. 6 minutes	max. 8 minutes

SILICON (Si) POWER MOSFET © CET05N10SL

REVISION TABLE

Revision	Date	Status	Notes
001	$30 / 09 / 2022$	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.

