

CEU16N10SL

100V ▲ 98mΩ ▲ 12A ▲ Si MOSFET

SILICON Si MOSFET ▲ SMD type

N-channel enhancement mode

UL94V-0 rated flame retardant epoxy

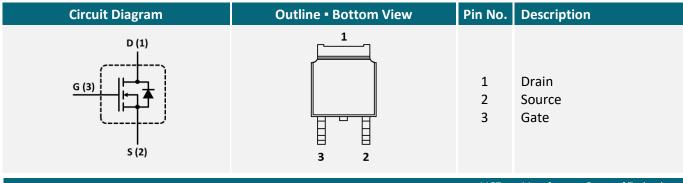
TO252 (DPAK) package ▲ MSL 3

Super high dense cell density for extremely low R_{DS(ON)}

High power and current handling capability

MAXIMUM RATINGS

Parameter (T_c = 25°C, unless otherwise noted)		Characteristics
Drain-Source Voltage	V _{DS}	100V
Gate-Source Voltage	V _{GS}	±16V
Continuous Drain Current at T _C = 25°C	I D	12A
Continuous Drain Current at T _C = 100°C	I D	8A
Pulsed Drain Current Note 1	I _{DM} Note4	48A
Maximum Power Dissipation at T _C = 25°C	P _D	36W
Power Dissipation Derating above 25°C	ΔP_D	0.28W/°C
Single Pulsed Avalanche Energy Note 4	E _{AS}	36mJ
Single Pulsed Avalanche Current Note 4	I _{AS}	12A
Operating and Storage Temperature Range	T _J , T _{STG}	-55°C to +150°C


THERMAL CHARACTERISTICS

Parameter	Symbol	Limit
Thermal Resistance, Junction-to-Case	R _{TH_JC}	3.5°C/W
Thermal Resistance, Junction-to-Ambient Note 2	R _{TH JA}	50°C/W

APPLICATIONS

Battery Management Systems	E-Bike	Industrial Control	Power Inverter	UPS
+4-	50			

PIN DESCRIPTION

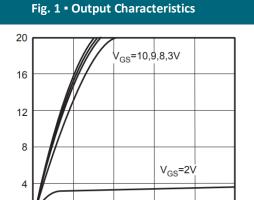
MGT ▲ Manufacturer Group of Technology

ELECTRICAL CHARACTERISTICS ▲ T_C = 25°C, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	100			V
Zero Gate Voltage Drain Current	$V_{DS} = 100V, V_{GS} = 0V$	I _{DSS}			1	μΑ
Gate Body Leakage Current, Forward	$V_{GS} = 16V$, $V_{DS} = 0V$	I _{GSSF}			100	nA
Gate Body Leakage Current, Reverse	$V_{GS} = -16V, V_{DS} = 0V$	I_{GSSR}			-100	nA
On Characteristics Note 3						
Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_{D} = 250 \mu A$	$V_{GS(th)}$	0.4		1.4	V
Static Drain-Source On-Resistance	$V_{GS} = 10V$, $I_D = 6A$	R _{DS(ON)}		98	120	mΩ
Static Drain-Source On-Resistance	$V_{GS} = 5V$, $I_D = 6A$	R _{DS(ON)}		103	130	mΩ
Static Drain-Source On-Resistance	$V_{GS} = 3V$, $I_D = 3A$	R _{DS(ON)}		120	165	mΩ
Dynamic Characteristics Note 3						
Input Capacitance	$V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$	C _{ISS}		520		pF
Output Capacitance	$V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$	Coss		120		pF
Reverse Transfer Capacitance	$V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$	C_{RSS}		35		pF
Switching Characteristics Note 3						
Turn-On Delay Time	$V_{DD} = 50V$, $V_{GS} = 10V$, $I_D = 11A$, $R_{G(ext)} = 6\Omega$	t _{D(ON)}		8		ns
Turn-On Rise Time	$V_{DD} = 50V$, $V_{GS} = 10V$, $I_D = 11A$, $R_{G(ext)} = 6\Omega$	t _R		4		ns
Turn-Off Delay Time	$V_{DD} = 50V$, $V_{GS} = 10V$, $I_D = 11A$, $R_{G(ext)} = 6\Omega$	t _{D(OFF)}		34		ns
Turn-Off Fall Time	V_{DD} = 50V, V_{GS} = 10V, I_D = 11A, $R_{G(ext)}$ = 6Ω	t _F		5		ns
Total Gate Charge	$V_{DS} = 80V$, $V_{GS} = 4.5V$, $I_{D} = 11A$	Q_{G}		9.7		nC
Gate Source Charge	$V_{DS} = 80V$, $V_{GS} = 4.5V$, $I_{D} = 11A$	Q _{GS}		0.9		nC
Gate Drain Charge	$V_{DS} = 80V$, $V_{GS} = 4.5V$, $I_{D} = 11A$	Q_{GD}		5.3		nC
Drain-Source Diode Characteristics a	nd Maximum Ratings					
Drain-Source Diode Forward Current		Is			12	Α
Drain-Source Diode Forward Voltage Note 2	V _{GS} = 0V, I _S = 12A	V_{SD}			1.5	V

Notes

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature
- 2: Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 3: Guaranteed by design, not subject to production testing.
- 4: Pulse width limited by safe operating area.
- 5: L = 0.5mH, $I_{AS} = 12$ A, $V_{DD} = 25$ V, $R_G = 25$ Ω, Starting $T_J = 25$ °C



D, Drain Current (A)

0

0

REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

V_{DS}, Drain-to-Source Voltage (V)

10

Fig. 2 • Transfer Characteristics

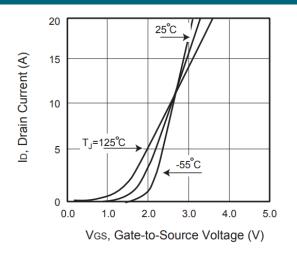


Fig. 3 • Capacitance

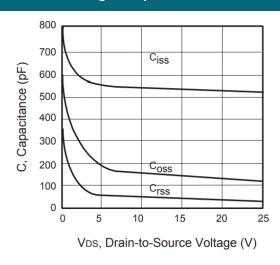


Fig. 4 • On-Resistance Variation with Temperature

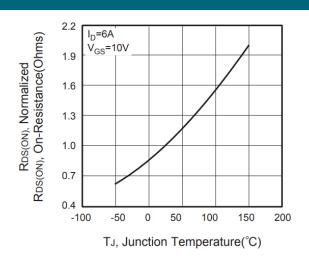
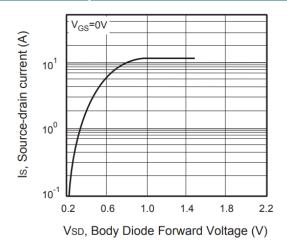



Fig. 5 • Gate Threshold Variation with Temperature

Fig. 6 • Body Diode Forward Voltage Variation with Source Current

MGT ▲ Manufacturer Group of Technology

REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

Fig. 7 • Gate Charge

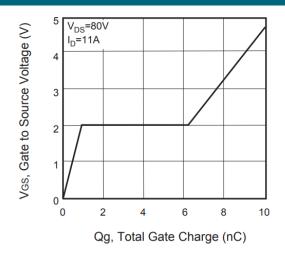


Fig. 8 • Maximum Safe Operating Area

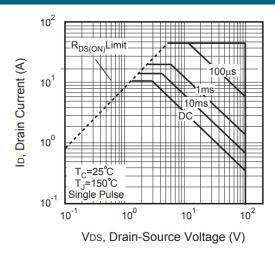


Fig. 9 • Breakdown Voltage Variation vs. Temperature

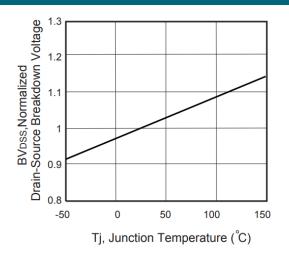
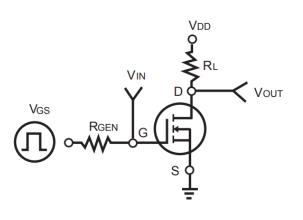
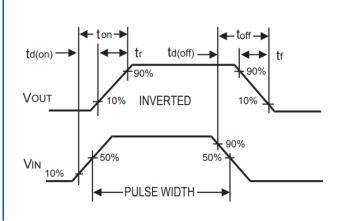
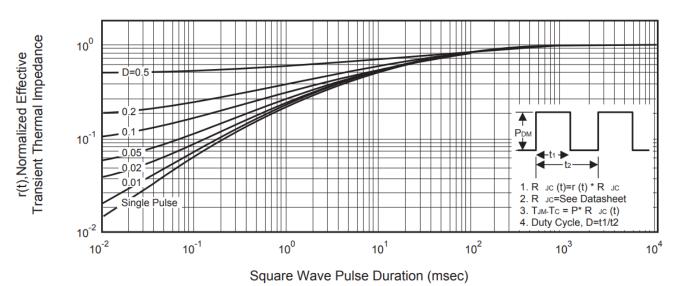
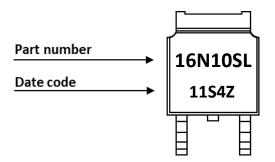




Fig. 10 • Switching Test Circuit

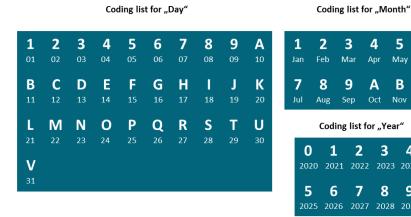
Fig. 11 • Switching Waveforms





REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

Fig. 12 • Normalized Thermal Transient Impedance Curve


PART MARKING

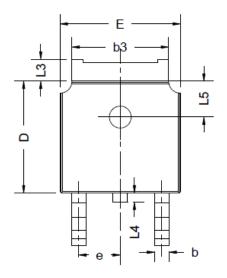
DATE CODE

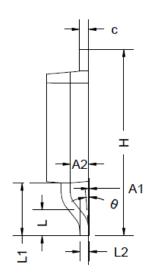
Example: 11S4Z

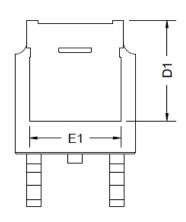
4 5 6

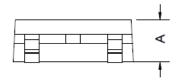
A В C

> 3 4


8

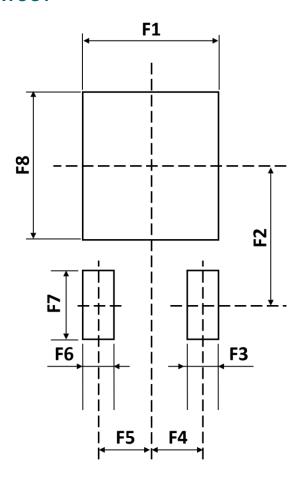

9


Mav Jun



PACKAGE OUTLINE

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	
Α	2.20	2.30	2.38	
A1	0.00	-	0.20	
A2	A2 0.90 1.07		1.17	
b	0.68 0.78		0.90	
b3	5.23	5.33	5.46	
С	0.43 0.53		0.61	
D	5.98 6.10		6.22	
D1				
Е	6.40 6.60		6.73	
E1	4.63	-	-	

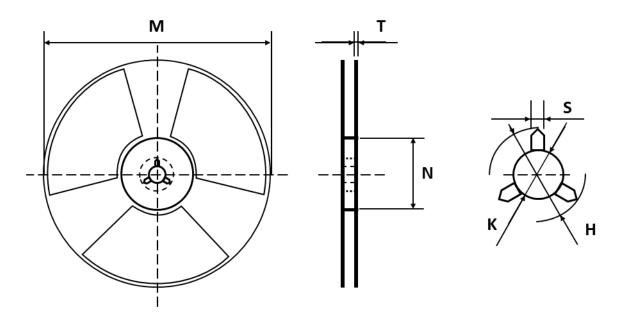

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)			
е		2.286 BSC				
Н	9.40	10.10	10.50			
L	1.38	1.50	1.75			
L1	2.90 REF					
L2		0.51 BSC				
L3	0.88	-	1.28			
L4	0.50		1.00			
L5	1.65	1.80	1.95			
θ	0°	-	8°			

ORDERING INFORMATION

Part Number	Package	Packing	Reel Qty.	Inner Box Qty.	Outer Box Qty.
CEU16N10SL	TO252 (DPAK)	Reel	2,500pcs	5,000pcs	40,000pcs

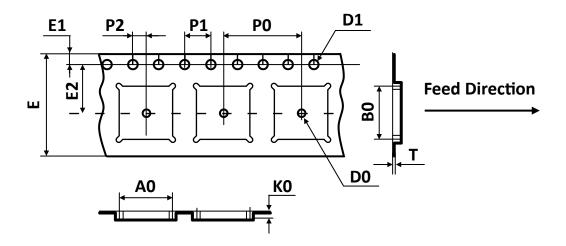
RECOMMENDED PAD LAYOUT

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	
F1	-	6.00	-	
F2	-	-		
F3	-	1.40	-	
F4	-	2.29	-	


Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
F5	-	2.29	-
F6	-	1.40	-
F7	-	3.00	-
F8	-	6.50	-

Notes:

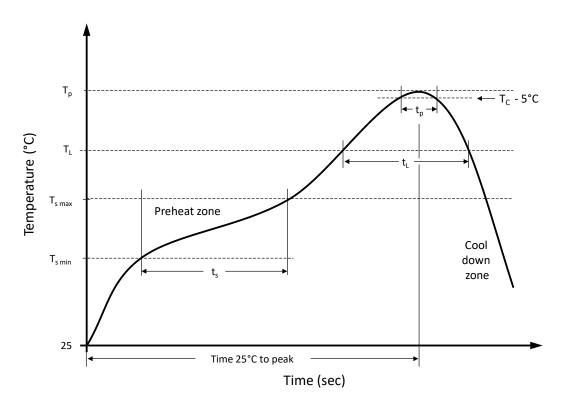
- 1. The suggested land pattern dimensions have been provided for reference only.
- 2. For further information, please reference document IPC-7351A.



REEL DIMENSIONS ▲ All dimensions in mm

Tape Size	Reel Size	M	N	T	Н	K	S
		Ø330.00	Ø100.00	2.10	22.00	13.00	2.00
16mm	Ø330	±2.00	±0.50	±0.20	±0.50	+0.50	+0.50
		12.00	±0.50	±0.20	±0.50	-0.20	-0.20

TAPE DIMENSIONS ▲ All dimensions in mm



Package	A0	В0	КО	D0	D1	E	E1	E2	P0	P1	P2	Т
TO252	6.90	10.50	2.70	1.50	1.50	16.00	1.75	7.50	8.00	4.00	2.00	0.30
(DPAK)	±0.10	±0.10	±0.10	MIN	±0.10	+0.30	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05

Note: All dimensions meet EIA-481-D requirements.

RECOMMENDED REFLOW SOLDERING PROFILE

Recommended reflow soldering conditions ▲ **Refer to JEDEC J-STD-020E**

Profile Features		Sn-Pb Eutetic Assembly	Pb-Free Assembly
Preheat temperature min.	$T_{s min}$	100 °C	150 °C
Preheat temperature max.	T _{s max}	150 °C	200 °C
Preheat time t _s from T _{s min} to T _{s max}	ts	120 seconds	120 seconds
Ramp-up rate (T₁ to Tp)		max. 3 °C/second	max. 3 °C/second
Liquidous temperature	T_L	183 °C	217 °C
Time t _L maintained above T _L	t _L	150 seconds max.	150 seconds max.
Peak package body temperature	Tp	235°C	260°C
Timeframe of within 5°C below and up to max actual peak body temperature	t _p	20 seconds max.	30 seconds max.
Ramp-down rate (T _L to T _p)		max. 6 °C/second	max. 6 °C/second
Time 25°C to peak temperature		max. 6 minutes	max. 8 minutes

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.