

CEW30SM120

1200V ▲ 78mΩ ▲ 30A ▲ SIC MOSFET

SILICON CARBIDE SIC MOSFET ▲ THT type

N-channel enhancement mode

Low on-resistance and capacitance

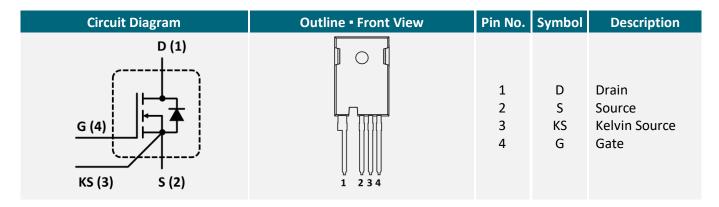
TO-247-4L package with Kelvin Source connection

Avalanche ruggedness

Elimination of voltage drops over the source inductance

Item (T _C = 25°C, unless otherwise noted)		Characteristics
Operating Temperature Range	Tj	-55°C to +175°C
Storage Temperature Range	Ts	-55°C to +175°C
Drain-Source Voltage	V _{DS MAX}	1200V
Continuous Drain Current	l _D	30A
Drain-Source On-State Resistance Note 1	R _{DS(ON)TYP}	78mΩ
Reverse Transfer Capacitance Note 2	C _{RSS}	7pF
Power Dissipation	P _D	170W

Notes


1: $V_{GS} = 20V, I_D = 20A$

2: $V_{DS} = 800V$, $V_{GS} = 0V$, f = 1MHz

APPLICATIONS

EV Charging	Industrial Inverters	Motors & Drives	Power Factor Correction	Renewable Energy	SMPS	UPS
₹			PFC	*		

PIN DESCRIPTION

ABSOLUT MAXIMUM RATINGS ▲ T_C = 25°C, unless otherwise noted

Item	Symbol	Limit	Unit
Drain-Source Voltage	V_{DS}	1200	V
Gate-Source Voltage	V_{GS}	-15/+25	V
Continuous Drain Current at T _C = 25°C	I _{D_25°C}	30	Α
Continuous Drain Current at T _C = 100°C	I _{D_100°C}	21	Α
Pulsed Drain Current Note 3	I _{DM}	116	Α
Maximum Power Dissipation at T _C = 25°C	P _{D_25°C}	170	W
Maximum Power Dissipation Derating above T _C = 25°C	P _{DERATING}	28	W/°C
Single Pulsed Avalanche Energy Note 4	E _{AS}	171	mJ
Single Pulsed Avalanche Current Note 4	I _{AS}	18.5	Α
Operating Junction Temperature	Tj	-55 to +175	°C
Storage Temperature Range	T_{STG}	-55 to +175	°C

THERMAL RESISTANCE PERFORMANCE

Item	Symbol	Limit	Unit
Thermal Resistance, Junction to Case	$R_{\theta,JC}$	0.86	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta,JA}$	40	°C/W

Notes

3: Repetitive Rating: Pulse width limited by maximum junction temperature.

4: L = 1mH, I_{AS} = 18.5A, V_{DD} = 50V, R_{G} = 25Ω, Starting T_{J} = 25 °C.

ELECTRICAL CHARACTERISTICS A T_J = 25°C, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 100\mu A$	BV_{DSS}	1200			V
Zero Gate Voltage Drain Current	$V_{DS} = 1200V, V_{GS} = 0V$	I _{DSS}			100	μΑ
Gate Body Leakage Current, Forward	$V_{GS} = 25V, V_{DS} = 0V$	I _{GSSF}			1	μΑ
Gate Body Leakage Current, Reverse	$V_{GS} = -15V, V_{DS} = 0V$	I _{GSSR}	-1			μΑ
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
On Characteristics Note 5						
Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_{D} = 250 \mu A$	$V_{GS(TH)}$	1.7		4.4	V
Static Drain-Source On-Resistance	$V_{GS} = 20V, I_D = 20A$	R _{DS(ON)}		78	110	mΩ
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Dynamic Characteristics Note 6						
Input Capacitance	$V_{DS} = 800V$, $V_{GS} = 0V$, $f = 1MHz$	C _{ISS}		1100		pF
Output Capacitance	$V_{DS} = 800V$, $V_{GS} = 0V$, $f = 1MHz$	Coss		85		pF
Reverse Transfer Capacitance	$V_{DS} = 800V$, $V_{GS} = 0V$, $f = 1MHz$	C_{RSS}		7		pF
E _{OSS} Stored Energy	$V_{DS} = 800V$, $V_{GS} = 0V$, $f = 1MHz$	E _{oss}		32		μͿ
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Switching Characteristics Note 6						
Turn-On Delay Time	V_{DD} = 800V, I_D = 20A, V_{GS} = -5/+20V; R_G = 4.7 Ω	t _{D(ON)}		15		ns
Turn-On Rise Time	V_{DD} = 800V, I_D = 20A, V_{GS} = -5/+20V; R_G = 4.7 $\!\Omega$	t_R		22		ns
Turn-Off Delay Time	V_{DD} = 800V, I_D = 20A, V_{GS} = -5/+20V; R_G = 4.7 $\!\Omega$	$t_{\text{D(OFF)}}$		55		ns
Turn-Off Fall Time	V_{DD} = 800V, I_D = 20A, V_{GS} = -5/+20V; R_G = 4.7 $\!\Omega$	t_{\scriptscriptstyleF}		84		ns
Turn-On Switching Loss	V_{DD} = 800V, I_D = 20A, V_{GS} = -5/+20V; R_G = 4.7 $\!\Omega$	E _{ON}		310		μJ
Turn-Off Switching Loss	V_{DD} = 800V, I_D = 20A, V_{GS} = -5/+20V; R_G = 4.7 $\!\Omega$	E _{OFF}		30		μJ
Total Switching Loss	V_{DD} = 800V, I_D = 20A, V_{GS} = -5/+20V; R_G = 4.7 $\!\Omega$	E _{TS}		340		μJ
Total Gate Charge	$V_{DS} = 600V$, $I_D = 20A$, $V_{GS} = -5/+20V$	\mathbf{Q}_{G}		40		nC
Gate-Source Charge	$V_{DS} = 600V$, $I_D = 20A$, $V_{GS} = -5/+20V$	Q_{GS}		6		nC
Gate-Drain Charge	$V_{DS} = 600V$, $I_D = 20A$, $V_{GS} = -5/+20V$	Q_{GD}		11		nC
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Diode Characteristics a	nd Maximum Ratings					
Drain-Source Diode Forward Voltage Note 5	$V_{GS} = -5V$, $I_S = 10A$	V_{SD}		3.7		V
Reverse Recovery Energy	$I_S = 20A$, $V_{GS} = 5V$, $V_R = 600V$, $dI_{SD}/dt = 1000A/\mu s$	E _{REC}		30		μЈ
Diode Reverse Recovery Time	$I_S = 20A$, $V_{GS} = 5V$, $V_R = 600V$, $dI_{SD}/dt = 1000A/\mu s$	t _{RR}		18		ns
Diode Reverse Recovery Charge	$I_S = 20A$, $V_{GS} = 5V$, $V_R = 600V$, $dI_{SD}/dt = 1000A/\mu s$	Q_{RR}		81		nC

Notes

5: Pulse Test: Pulse Width < 300μs, Duty Cycle < 2%.

6: Guaranteed by design, not subject to production testing.

REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

Fig. 1 • Output Characteristics

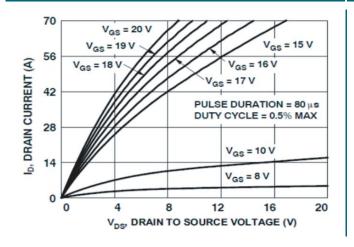


Fig. 2 • Normalized On-Resistance vs. Drain Current and Gate Voltage

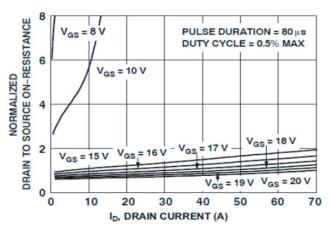


Fig. 3 • Normalized On-Resistance vs. Junction Temperature

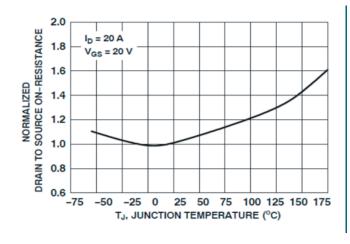


Fig. 4 • On-Resistance vs. Gate to Source Voltage

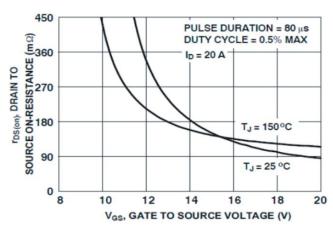
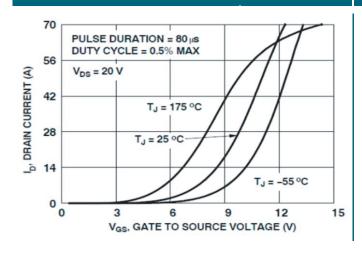
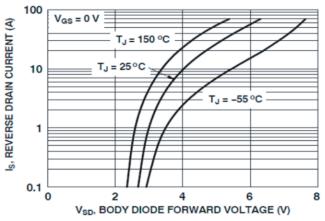
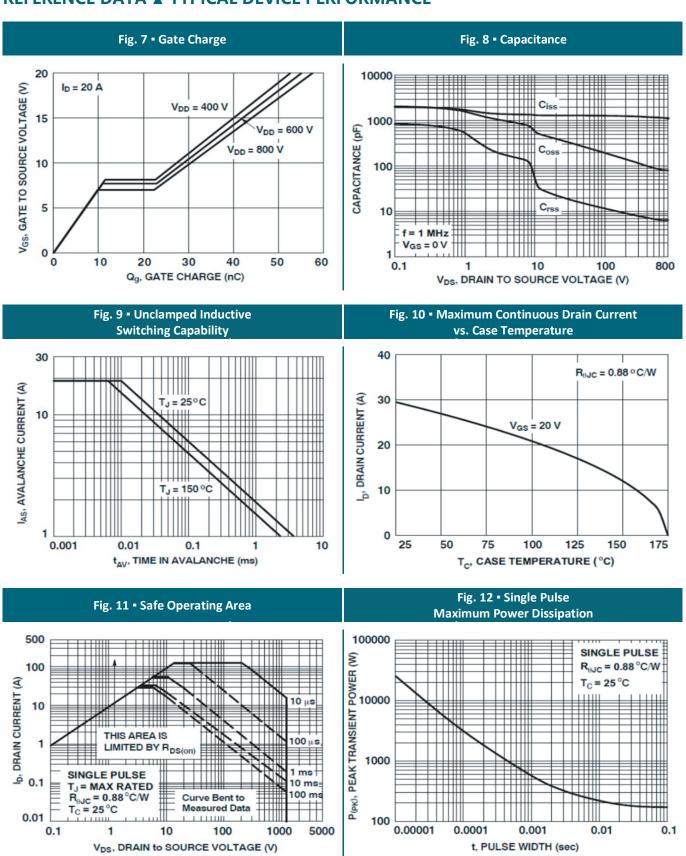
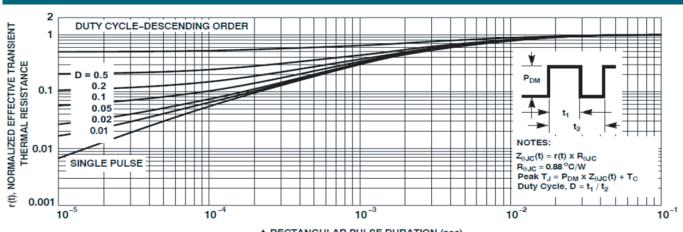


Fig. 5 • Transfer Characteristic

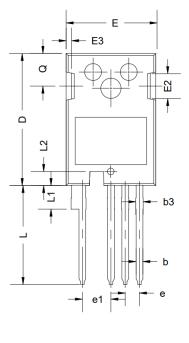



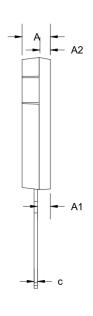

Fig. 6 • Body Diode Characteristic

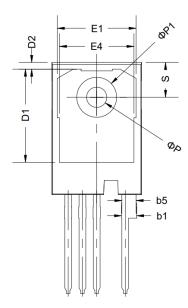
REFERENCE DATA A TYPICAL DEVICE PERFORMANCE



REFERENCE DATA A TYPICAL DEVICE PERFORMANCE





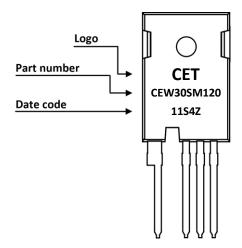


PACKAGE OUTLINE

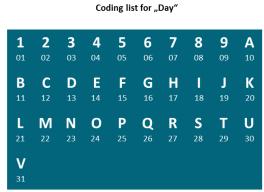
Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
Α	4.83	5.02	5.21
A1	2.29	2.41	2.54
A2	1.91	2.00	2.16
b	1.07	1.20	1.33
b1	2.39	2.67	2.84
b3	1.07	1.30	1.60
B5	2.39	2.53	2.69
С	0.55	0.60	0.68
D	23.30	23.45	23.60
D1	16.25	16.55	17.65
D2	0.95	1.19	1.25
E	15.75	15.94	16.13
E1	13.10	14.02	14.15

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)		
E2	3.68	4.40	5.10		
E3	1.00	1.45	1.90		
E4	12.38	13.26	13.43		
e	2.54 BSC				
e1		5.08 BSC			
L	17.31	17.57	17.82		
L1	3.97	4.19	4.37		
L2	2.35	2.50	2.65		
ØΡ	3.51	3.61	3.65		
ØP1	7.19 REF				
Q	5.49	5.79	6.00		
S	6.04	6.17	6.30		

TO-247-4L package ▲ Epoxy meets UL94-V0

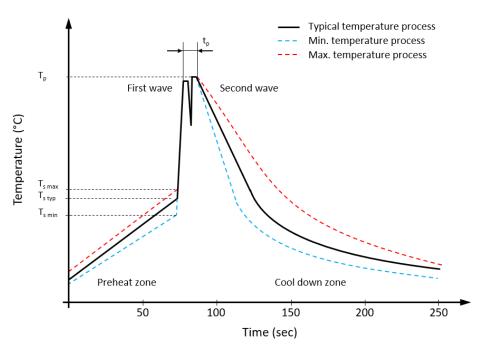

ORDERING INFORMATION

Part Number	Package	Packing	Tube Qty.	Inner Box Qty.	Outer Box Qty.
CEW30SM120	TO-247-4L	Tube	30pcs	450pcs	1,800pcs


PART MARKING

DATE CODE

Example: 11S4Z



RECOMMENDED WAVE SOLDERING PROFILE A THT PACKAGE

Classification wave soldering profile ▲ Refer to EN 61760-1: 2006

Profile Features		Value ▲ Sn-Pb Assembly	Value ▲ Pb-free Assembly
Preheat temperature min.	$T_{s min}$	100 °C	100 °C
Preheat temperature typical	T _{s typ}	120 °C	120 °C
Preheat temperature max.	T _{s max}	130 °C	130 °C
Preheat time t_s from T_{smin} to T_{smax}	ts	70 seconds	70 seconds
Peak temperature	Tp	235 °C to 260 °C	245 °C to 260 °C
Time of actual peak temperature	t _p	Max. 10 seconds Max. 5 second each wave	Max. 10 seconds Max. 5 second each wave
Ramp-down date min.		~ 2 °C/second	~ 2 °C/second
Ramp-down rate typical		~ 3.5 °C/second	~ 3.5 °C/second
Ramp-down rate max.		~ 5 °C/second	~ 5 °C/second
Time 25°C to 25°C		4 minutes	4 minutes

SILICON CARBIDE (SiC) POWER MOSFET ▲ CEW30SM120

CET MOS

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Preliminary release	Preliminary publication

PRELIMINARY

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.