SILICON (Si) POWER MOSFET A CEZC16R10LA

CEZC16R10LA

100V ▲ 13.4mΩ ▲ 29A ▲ Si MOSFET

SILICON Si MOSFET ▲ SMD type N-channel enhancement mode UL94V-0 rated flame retardant epoxy PPAK3x3 package ▲ MSL 3 Super high dense cell density for extremely low R_{DS(ON)} High power and current handling capability

MGT **A** Manufacturer Group of Technology

MAXIMUM RATINGS

Parameter ($T_c = 25^{\circ}C$, unless otherwise noted)	Characteristics	
Drain-Source Voltage	V _{DS}	100V
Gate-Source Voltage	V _{GS}	±20V
Continuous Drain Current at R _{TH_JC}	I _D	29A
Continuous Drain Current at R _{TH_JA}	I _D	9A
Pulsed Drain Current at R _{TH_JC} Note 1	I _{DM}	116A
Pulsed Drain Current at R _{TH_JA} Note 1	I _{DM}	36A
Maximum Power Dissipation	PD	25W
Single Pulsed Avalanche Energy Note 5	E _{AS}	10mJ
Single Pulsed Avalanche Current Note 5	I _{AS}	4.5A
Operating and Storage Temperature Range	T _J , T _{STG}	-55°C to +150°C

THERMAL CHARACTERISTICS

Parameter	Symbol	Limit
Thermal Resistance, Junction-to-Case	R _{TH_JC}	5°C/W
Thermal Resistance, Junction-to-Ambient Note 2	R _{th_ja}	50°C/W

APPLICATIONS

Battery Management Systems	E-Bike	Industrial Control	Power Inverter	UPS
+ 4 -	50			

PIN DESCRIPTION

Circuit Diagram	Outline - Bottom View	Pin No.	Description
D (5) G (4) S (1,2,3)		1 2 3 4 5	Source Source Gate Drain

CEZC16R10LA A Rev.001 A Date: 30/09/2022 A Page: 1

Copyright by MGT A www.mgt.co.com A All rights reserved A The information in this document is subject to change without notice.

HALOGEN

FREE

CET MOS

ELECTRICAL CHARACTERISTICS A T_c = 25°C, unless otherwise noted

ltem	Condition	Symbol	Min.	Тур.	Max.	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	BV _{DSS}	100			V
Zero Gate Voltage Drain Current	V_{DS} = 100V, V_{GS} = 0V	I _{DSS}			10	μA
Gate Body Leakage Current, Forward	V_{GS} = 20V, V_{DS} = 0V	I _{GSSF}			100	nA
Gate Body Leakage Current, Reverse	V_{GS} = -20V, V_{DS} = 0V	I _{GSSR}			-100	nA
On Characteristics Note 3						
Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	$V_{GS(th)}$	1		2.5	V
Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 12A	R _{DS(ON)}		13.4	16	mΩ
Static Drain-Source On-Resistance	V_{GS} = 4.5V, I_{D} = 7A	R _{DS(ON)}		18.4	24	mΩ
Dynamic Characteristics Note 4						
Input Capacitance	V_{DS} = 50V, V_{GS} = 0V, f = 1MHz	C _{ISS}		900		pF
Output Capacitance	V_{DS} = 50V, V_{GS} = 0V, f = 1MHz	Coss		205		pF
Reverse Transfer Capacitance	V_{DS} = 50V, V_{GS} = 0V, f = 1MHz	C _{RSS}		15		pF
Switching Characteristics Note 4						
Turn-On Delay Time	V_{DD} = 50V, V_{GS} = 10V, I_{D} = 1A, $R_{\text{G}(\text{ext})}$ = 6 Ω	t _{D(ON)}		17		ns
Turn-On Rise Time	V_{DD} = 50V, V_{GS} = 10V, I_{D} = 1A, $R_{G(\text{ext})}$ = 6 Ω	t _R		4		ns
Turn-Off Delay Time	V_{DD} = 50V, V_{GS} = 10V, I_{D} = 1A, $R_{G(\text{ext})}$ = 6 Ω	t _{D(OFF)}		42		ns
Turn-Off Fall Time	V_{DD} = 50V, V_{GS} = 10V, I_{D} = 1A, $R_{\text{G(ext)}}$ = 6 Ω	t _F		20		ns
Total Gate Charge	V_{DS} = 50V, V_{GS} = 4.5V, I_{D} = 20A	Q _G		11.5		nC
Gate Source Charge	V_{DS} = 50V, V_{GS} = 4.5V, I_{D} = 20A	Q _{GS}		1.7		nC
Gate Drain Charge	V_{DS} = 50V, V_{GS} = 4.5V, I_{D} = 20A	\mathbf{Q}_{GD}		7.8		nC
Drain-Source Diode Characteristics a	nd Maximum Ratings					
Drain-Source Diode Forward Current ^{Note 2}		١ _s			20	А
Drain-Source Diode Forward Voltage Note 3	V _{GS} = 0V, I _S = 12A	V_{SD}			1.2	V

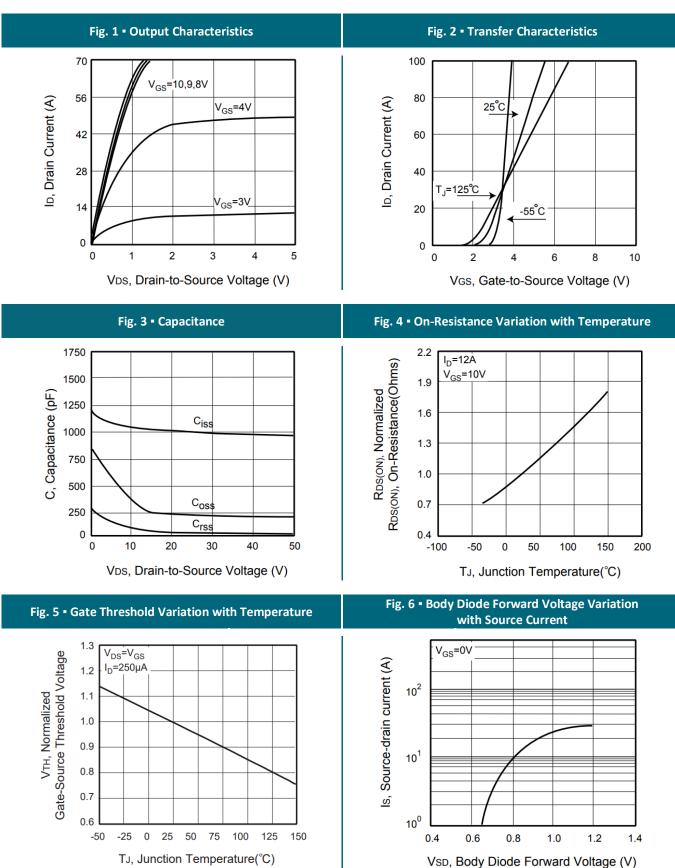
Notes

1: Repetitive Rating: Pulse width limited by maximum junction temperature

2: Surface Mounted on FR4 Board, $t \le 10$ sec.

3: Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.

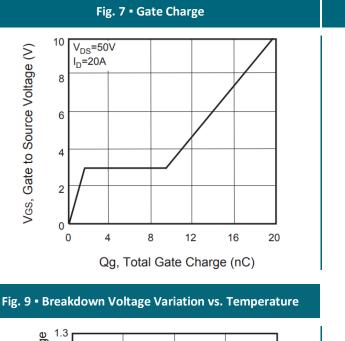
4: Guaranteed by design, not subject to production testing.

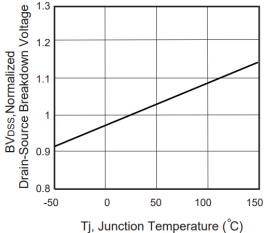

5: L = 1mH, $I_{AS} = 4.5A$, $V_{DD} = 24V$, $R_G = 25\Omega$, Starting $T_J = 25^{\circ}C$

MGT **A** Manufacturer Group of Technology

CET MOS

REFERENCE DATA ▲ TYPICAL DEVICE PERFORMANCE




Copyright by MGT **A** www.mgt.co.com **A** All rights reserved **A** The information in this document is subject to change without notice.

CET MOS

REFERENCE DATA A TYPICAL DEVICE PERFORMANCE

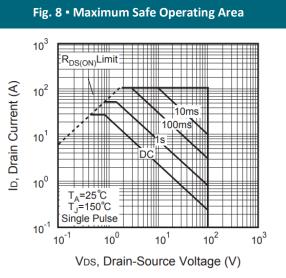


Fig. 10 • Switching Test Circuit Fig. 11 - Switching Waveforms VDD ton • toff tr td(off) RL td(on) tf VIN 90% 90% Vout D Vout INVERTED 10% 10% Vgs Rgen G K 90% 50% 50% Vin 10% S PULSE WIDTH

Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

CET MOS

REFERENCE DATA ▲ TYPICAL DEVICE PERFORMANCE

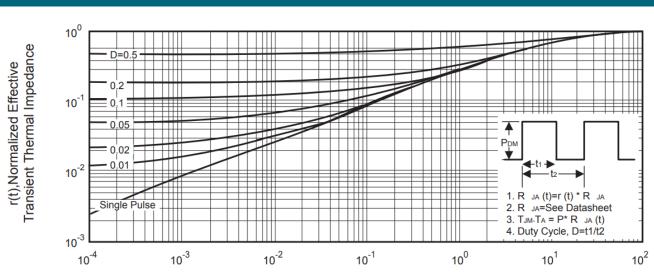
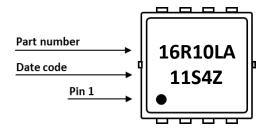
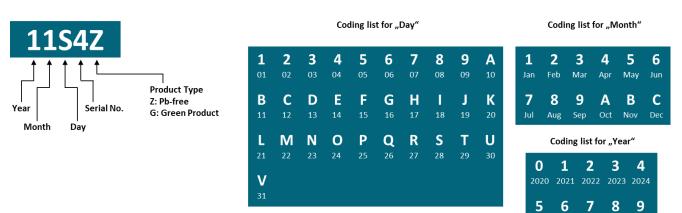



Fig. 12 • Normalized Thermal Transient Impedance Curve

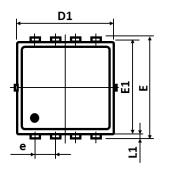

Square Wave Pulse Duration (sec)

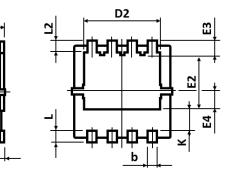
PART MARKING

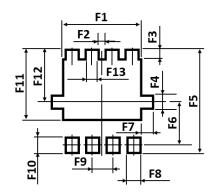
DATE CODE

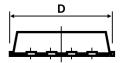
Example: 11S4Z

CEZC16R10LA ▲ Rev.001 ▲ Date: 30/09/2022 ▲ Page: 5


2025 2026 2027 2028 2029


Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.




PACKAGE OUTLINE AND RECOMMENDED PAD LAYOUT

С

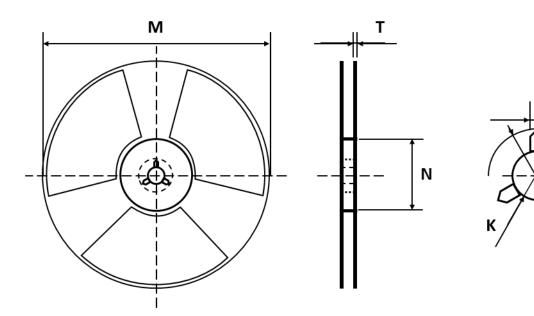
Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
А	0.700	-	0.850	E2	1.540	-	1.940
b	0.200	-	0.400	E3	0.280	-	0.650
с	0.100	-	0.250	E4	0.370	-	0.770
D	3.000	-	3.450	е		0.650 (BSC)	
D1	3.000	-	3.250	К	0.500	-	0.890
D2	2.290	-	2.650	L	0.300	-	0.500
E	3.150	-	3.450	L1	0.060	-	0.200
E1	2.900	-	3.200	L2	0.270	-	0.570

Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)	Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
F1	-	2.500	-	F8	-	0.350	-
F2	-	0.300	-	F9	-	0.650	-
F3	-	0.400	-	F10	-	0.500	-
F4	-	0.430	-	F11	-	2.280	-
F5	-	3.350	-	F12	-	1.700	-
F6	-	1.400	-	F13	-	0.350	-
F7	_	0.420	_				

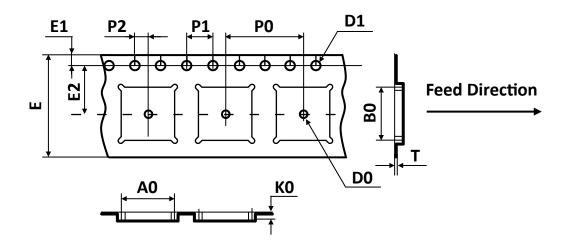
Notes: 1. The suggested land pattern dimensions have been provided for reference only.

2. For further information, please reference document IPC-7351A.

ORDERING INFORMATION


Part Number	Package	Packing	Reel Qty.	Inner Box Qty.	Outer Box Qty.
CEZC16R10LA	PPAK 3x3	Reel	5,000pcs	10,000pcs	80,000pcs

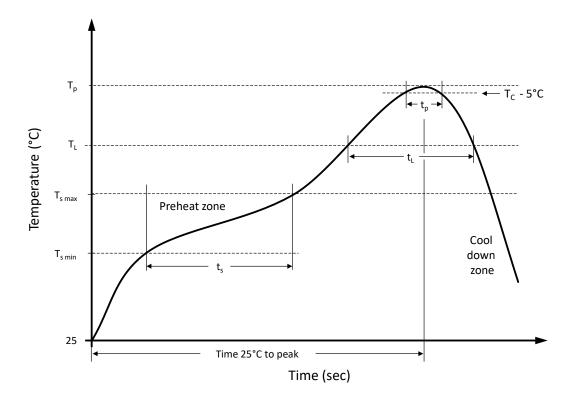
S


Н

REEL DIMENSIONS All dimensions in mm

Tape Size	Reel Size	М	N	Т	Н	К	S
		Ø330.00	Ø100.00	2.10	22.00	13.00	2.00
12mm	Ø330	±2.00	±1.00	±0.20	±0.50	+0.50 -0.20	±0.50

TAPE DIMENSIONS All dimensions in mm


Package	A0	B0	К0	D0	D1	E	E1	E2	P0	P1	P2	т
	6.50	5.28	2.00	1.50	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.25
РРАК ЗхЗ	±0.10	±0.10	±0.10	±0.25	±0.10	+0.30 -0.10	±0.10	±0.05	±0.10	±0.10	±0.05	±0.02

RECOMMENDED REFLOW SOLDERING PROFILE

Recommended reflow soldering conditions ▲ **Refer to JEDEC J-STD-020E**

Profile Features		Sn-Pb Eutetic Assembly	Pb-Free Assembly
Preheat temperature min.	T_{smin}	100 °C	150 °C
Preheat temperature max.	$T_{s max}$	150 °C	200 °C
Preheat time t_s from $T_{s min}$ to $T_{s max}$	ts	120 seconds	120 seconds
Ramp-up rate (T _L to T _p)		max. 3 °C/second	max. 3 °C/second
Liquidous temperature	ΤL	183 °C	217 °C
Time t_L maintained above T_L	t∟	150 seconds max.	150 seconds max.
Peak package body temperature	Tp	235°C	260°C
Timeframe of within 5°C below and up to max actual peak body temperature	tp	20 seconds max.	30 seconds max.
Ramp-down rate (T_L to T_p)		max. 6 °C/second	max. 6 °C/second
Time 25°C to peak temperature		max. 6 minutes	max. 8 minutes

Copyright by MGT **A** www.mgt.co.com **A** All rights reserved **A** The information in this document is subject to change without notice.

REVISION TABLE

Revision	Date	Status	Notes
001	30/09/2022	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <u>www.mgt.co.com.</u>