

GPT65Z1SHD

100V ▲ 140mA ▲ GaN JFET

GALLIUM NITRIDE GaN JFET ▲ SMD type

Normally-on device

Depletion mode HEMT for non-switching use

Small size ▲ 3535 PLCC package

Larger input voltage compared to linear IC ▲ V_{DSOP} = 100V

Simple to design ▲ Few peripheral components

SPECIFICATION

Item (T _C = 25°C, unless otherwise noted)		Characteristics
Operating Temperature Range	Tı	-55°C to +150°C
Storage Temperature Range	Ts	-55°C to +150°C
Drain-Source Maximum Operating Voltage	V _{DSOP}	100V
Drain-Source Breakdown Voltage	BV _{DS}	650V
Continuous Drain Load Current	I _{DL}	140mA

DESCRIPTION

GPT65Z1SHD, Gallium Nitride (GaN) JFET is a normally-on device. Depletion Mode HEMT design for non-switching use.

GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

APPLICATIONS

AC/DC LED Power Supply	LED AC Lamps < 50W	LED DC Lamps < 50W

BENEFITS

- ▲ Small size linear constant current IC
- ▲ High V_{DS}, larger input voltage range compared to general linear IC
- ▲ Usable for AC or DC LED designs from 4W to 50W
- ▲ Few peripheral passive components necessary

PIN DESCRIPTION

Circuit Diagram • Top View	Outline • Bottom View	Pin No.	Symbol	Description
3 2 1 S D D S TP G 4 5 6	1 2 3 TP G S 6 5 4	1 2 3 4 5 6	D D S S TP G	Drain Drain Source Source Thermal Pad Gate

ABSOLUT MAXIMUM RATINGS ▲ T_C = 25°C, unless otherwise noted

Item	Symbol	Limit	Unit
Drain-Source Breakdown Voltage	BV_DS	650	V
Gate-Source Voltage	V_{GSS}	±20	V
Continuous Drain Current Note 1	I _{DS}	350	mA

Note

1: Maximum operating voltage is 100V. Maximum continuous load current is 140mA. Operating power $P_{OP} = V_{DSOP} \times I_{DL} \le 3.5W$

ELECTRICAL CHARACTERISTICS \blacktriangle T_C = 25°C, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Forward Device Characteristics						
Drain-Source Voltage	$V_{GS} = -6V$, $I_D = 100 \mu A$	V_{DSS}	650			V
Gate-Source Threshold Voltage	$V_{DS} = 10V$, $I_D = 1mA$	V_{GSth}		-4.7		V
Drain-Source Leakage Current	$V_{DS} = 500V, V_{GS} = -5V$	I_{DSS}			90	μΑ
Gate-Source Leakage Current	$V_{GS} = -5V$, $V_{DS} = 0V$	I _{GSS}			5	μΑ
Continuous Drain Load Current	$V_{DS} = 2V$, $V_{GS} = 0V$	I_{DL}			140	mA
Saturation Drain Current	$V_{DS} = 10V, V_{GS} = 0V$	I _{DSat (DC 10V)}			350	mA
Saturation Drain Current	$V_{DS} = 20V, V_{GS} = 0V$	I _{DSat (DC 20V)}			300	mA
Drain-Source On-State Resistance	$V_{GS} = 0V, I_D = 50mA$	R _{DS(ON)}			16	Ω

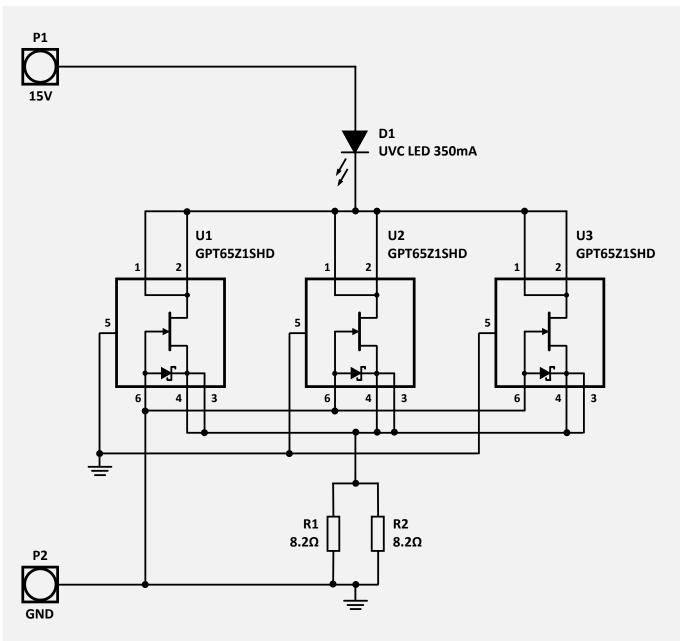
THERMAL CHARACTERISTIC RATINGS

Items	Тур.	
Thermal Resistance Junction to Ambient Note 2	R _{thJA}	35°C/W
Thermal Resistance Junction to Case	R _{thJC}	8.5°C/W

Note

1: Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper and 70μm thickness.

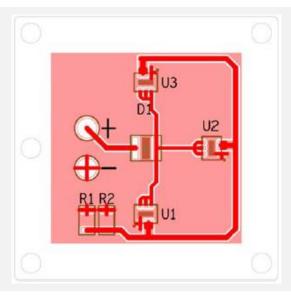
REFERENCE DATA



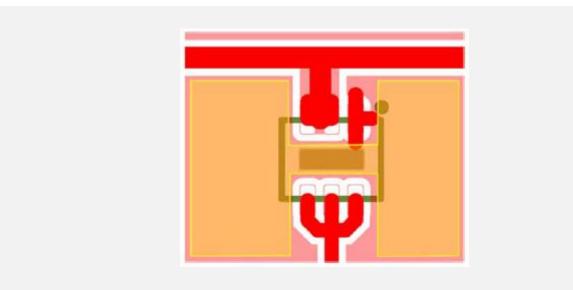
MGT ▲ Manufacturer Group of Technology

TYPICAL APPLICATION CIRCUIT A UVC LED MODULE

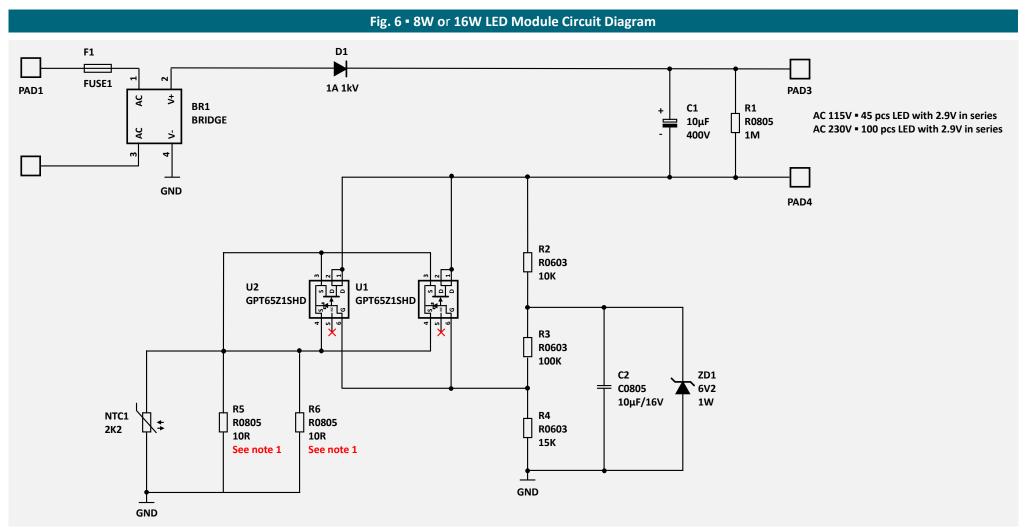
Fig. 3 • UVC LED Module Circuit Diagram


BILL OF MATERIAL

Item No.	Quantity	Value	Ref. Des.	Description	Package
1	1		D1	UVC LED 2.6W, λ = 260nm to 270nm	SON3535-2P
2	2	8.2Ω	R1, R2	Resistor 8.2Ω, 1%, ±100ppm, 0.25W	1206
3	3		U1, U2, U3	GPT65Z1SHD, GaN FET	SON3535-6P



TYPICAL APPLICATION CIRCUIT A UVC LED MODULE


Fig. 5 • PCB Layout Note

- 1. Copper pouring process at the bottom, heat dissipation increases reliability.
- 2. The copper casting area is as large as possible, the min. area: 12mm X 12mm.
- 3. Keep away from high power components.

TYPICAL APPLICATION CIRCUIT **A** 8W or 16 W LED MODULE

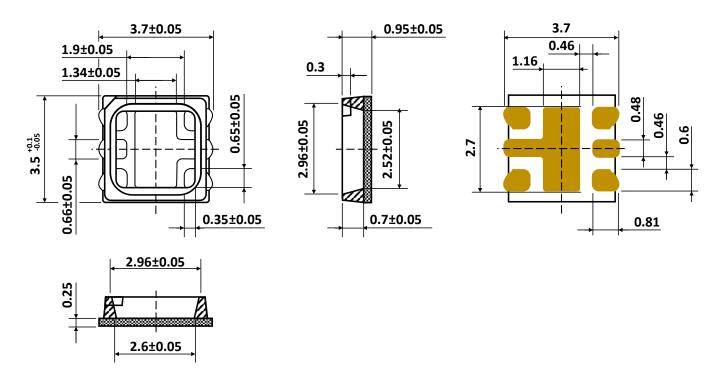
Note

1: R5/R6 sets the output current and therefore the output power. High ohm values reduce the output power. See recommended resistor values for 4W to 16W on page 6.

RECOMMENDED RESISTORS TO SET THE OUTPUT CURRENT

Output Power	4W	8W	12W	16W
Output Current	30mA	60mA	90mA	120mA
Resistor Value R5	120Ω	43Ω	24Ω	10Ω
Resistor Value R6	120Ω	43Ω	24Ω	10Ω

Note:

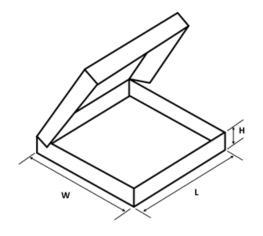

For safety reasons, it is not recommended to use the full 140mA load in circuit design. 20mA less than full load is a good value.

BILL OF MATERIAL A MOTHERBOARD

Item	Туре	Designator	Description	Qty
1	Fuse	F1	2410/500mA/250V	1
2	Bridge Rectifier	BR1	MBLS 500mA/1kV	1
3	Alu Electrolytic Cap.	C1	10uF/400V/10x18mm/105°C/10000h	1
4	MLCC	C2	0805 10μF/16V/X7R/10%	1
5	Rectifier	D1	S1MFL 1A/1kV/SOD-123FL	1
6	Zener Diode	ZD1	KDZV6.2B 6.2V/1W/SOD-123	1
7	GaN Fet	U1,U2	GPT65Z1SHD 140mA/100V/PLCC3535	2
8	Chip Resistor	R1	0805 1M/5%/200ppm	1
9	Chip Resistor	R2	0603 10K/5%/200ppm	1
10	Chip Resistor	R3	0603 100K/5%/200ppm	1
11	Chip Resistor	R4	0603 15K/5%/200ppm	1
12	Chip Resistor	R5,R6	1206 10R/1%/100ppm	2
13	Chip NTC	NTC1	0805 2K2/5%/200mW	1

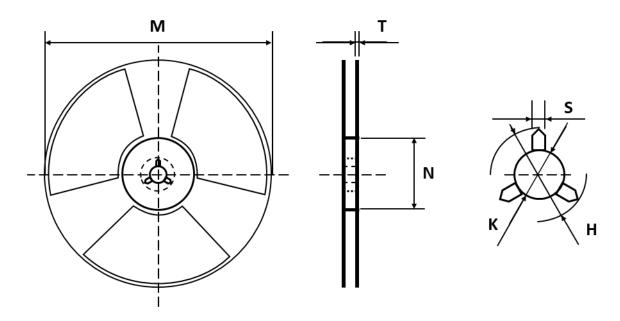
PACKAGE OUTLINE

STORAGE AND HANDLING CONDITIONS

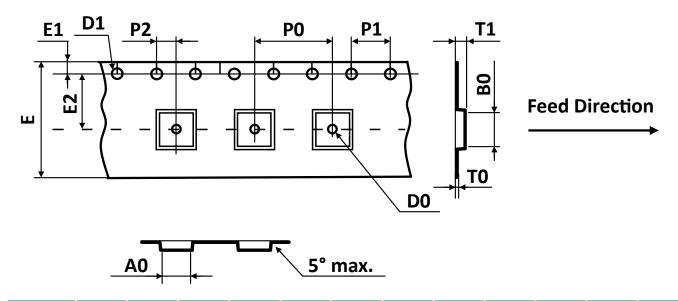

ESD level	Floor life	Conditions	MSL
HBM class 2	168 hours	T _A < 30°C, RH < 60%	3

ORDERING INFORMATION

Part Number	Package	Packing	Quantity	Reel Diameter
GPT65Z1SHD	3535 PLCC	Tape and Reel	3000pcs	330mm (13")


REEL BOX DIMENSION ▲ All dimensions in mm

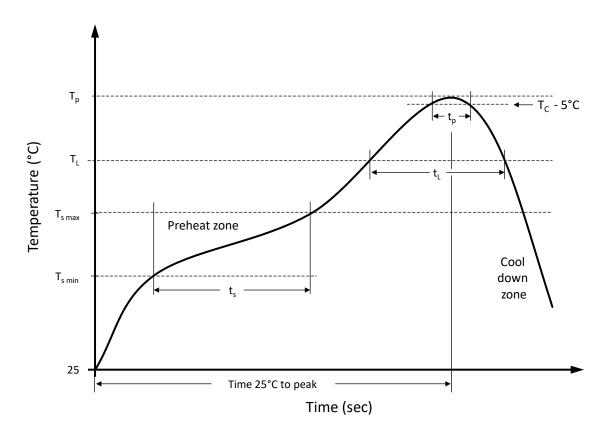
Outside Dimensions				
Ø 330mm reel				
W 450				
L	450			
Н 80				



REEL DIMENSIONS All dimensions in mm

Tape Size	Reel Size	M	N	T	Н	K	S
12mm		Ø330.00	Ø102.00	2.00	13.00	10.50	2.00
	Ø330	±0.20	±0.10	±2.0	+0.50 -0.20	±0.25	±0.25

TAPE DIMENSIONS ▲ All dimensions in mm



	Package	A0	В0	D0	D1	Ε	E1	E2	P0	P1	P2	то	T1
	2525	4.01	3.81	1.50	1.50	12.00	1.75	5.50	8.00	4.00	2.00	1.08	0.20
	3535 PLCC	±0.05	±0.05	+0.25	±0.10	+0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.05	±0.02
						-0.10							

Note: All dimensions meet EIA-481-D requirements.

RECOMMENDED REFLOW SOLDERING PROFILE

Recommended reflow soldering conditions ▲ **Refer to JEDEC J-STD-020E**

Profile Features		Sn-Pb Eutetic Assembly	Pb-Free Assembly	
Preheat temperature min. T _{s min}		100 °C	150 °C	
Preheat temperature max.	T _{s max}	150 °C	200 °C	
Preheat time t _s from T _{s min} to T _{s max}	t_s	120 seconds	120 seconds	
Ramp-up rate (T _L to T _p)		max. 3 °C/second	max. 3 °C/second	
Liquidous temperature	T∟	183 °C	217 °C	
Time t _L maintained above T _L	t _L	150 seconds max.	150 seconds max.	
Peak package body temperature	Tp	235°C	260°C	
Timeframe of within 5°C below and up to max actual peak body temperature	t _p	20 seconds max.	30 seconds max.	
Ramp-down rate (T _L to T _p)		max. 6 °C/second	max. 6 °C/second	
Time 25°C to peak temperature		max. 6 minutes	max. 8 minutes	

REVISION TABLE

Revision	Date	Status	Notes
001	01/01/2022	Initial release	Initial publication
002	30/03/2022	Second release	Add recommended resistors to set the output current

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.