GALLIUM NITRIDE (GaN) FET ▲ GPT65Z4YMR

GaN POWER TECHNOLOGY

GPT65Z4YMR

650V ▲ 130mΩ ▲ GaN FET

MGT **A** Manufacturer Group of Technology

GALLIUM NITRIDE GaN FET ▲ SMD type Normally off device Easy to drive with standard MOSFET driver Ultra-thin DFN8080 package with 0.9mm height Moisture Sensitivity Level ▲ MSL 3 Ultra-low Q_{RR} and very robust design

SPECIFICATION

Item (T _c = 25°C, unless otherwise noted)		Characteristics
Operating Temperature Range	TJ	-55°C to +150°C
Storage Temperature Range	Ts	-55°C to +150°C
Drain-Source Voltage	V _{DSS}	650V
Transient Drain-Source Voltage Note 1	V _{TR(DSS)}	800V
Drain-Source On-State Resistance Note 2	R _{DS(ON)TYP}	130mΩ
Typical Recovered Charge Note 3	Q _{RR}	26nC
Typical Total Gate Charge	Q _G	38nC

RoHS

REACH

HALOGEN

FREE

Notes

1: Spike duty cycle DC < 0.01, spike duration time < 20µs during off-state mode

2: V_{GS} = 8V, I_D = 4A, T_J = 25°C

3: See diode reverse recovery test circuit and waveform, Fig. 17, and Fig. 18

APPLICATIONS

Battery	Power	LED	Wireless	AC/DC	DC/DC	Class D Audio
Chargers	Adapters	Lighting	Power	Converter	Converter	Amplifiers
B	P -	-Ò,-				()

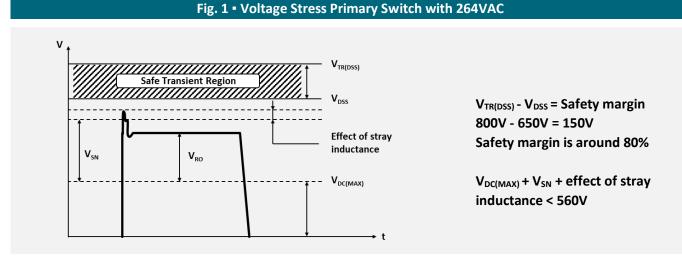
PIN DESCRIPTION

Circuit Diagram	Outline - Bottom View	Pin No.	Symbol	Description
G	2 1	1 2 3	G D S	Gate Drain Source

GPT65Z4YMR ▲ Rev.002 ▲ Date: 11/11/2022 ▲ Page: 1

Copyright by MGT A www.mgt.co.com A All rights reserved A The information in this document is subject to change without notice.

STORAGE AND HANDLING CONDITIONS

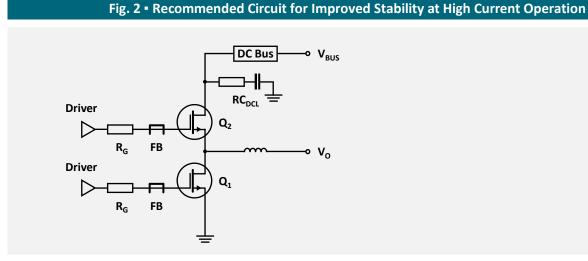

ESD level	Floor life	Conditions	MSL
HBM class 2	168 hours	T _A < 30°C, RH < 60%	3

ABSOLUT MAXIMUM RATINGS **A** T_C = 25°C, unless otherwise noted

Item	Condition	Symbol	Limit	Unit
Drain-Source Breakdown Voltage		V _{DSS}	650	V
Transient Drain-Source Voltage Note1		V _{(TR)DSS}	800	V
Gate-Source Voltage		V _{GSS}	±20	V
Continuous Drain Current	T _C = 25°C ^{Note 2}	I _D	18	А
Continuous Drain Current	T _C = 100°C ^{Note 2}	ID	11.5	А
Pulse Drain Current	T_c = 25°C, Pulse Width = 10µs	I _{DM}	80	А
Maximum Power Dissipation	T _C = 25°C	PD	67.5	W
Operating Temperature Range	Case	Tc	-55 to +150	°C
Operating Temperature Range	Junction	TJ	-55 to +150	°C
Storage Temperature Range		Ts	-55 to +150	°C

Note:

- 1: Spike duty cycle DC < 0.01, spike duration time < 2µs during off-state mode
- 2: See application information for increased stability at high current operation, fig. 2


VDC(MAX)Maximum input voltageVROReflected output voltageVSNSnubber capacitor voltage

- V_{DSS} Drain-Source breakdown voltage
- V_{(TR)DSS} Transient Drain-source voltage

MGT 🔺 Manufacturer Group of Technology

APPLICATION INFORMATION

A ferrite bead (FB) should be connected in series with the gate pin to dampen the resonant circuit of gate-source loop inductance and the input capacitance of the GaN-FET. The ferrite bead should be placed as close as possible to the gate pin to minimize the gate-source loop. (See figure 2). This causes fast switching stability. We recommend an impedance of 470Ω at 100MHz for the ferrite bead. In addition, a series resistance (R_G) of 33Ω should be provided.

Furthermore, a DC-link snubber should always be used to eliminate instability of the GaN-FET. In the simplest case, an RC combination is connected in parallel to the DC link bus, which significantly reduces the Q factor of any resonance in the bus. We recommend an MLCC with 68pF and an SMD resistor with 15Ω as well-suited values.

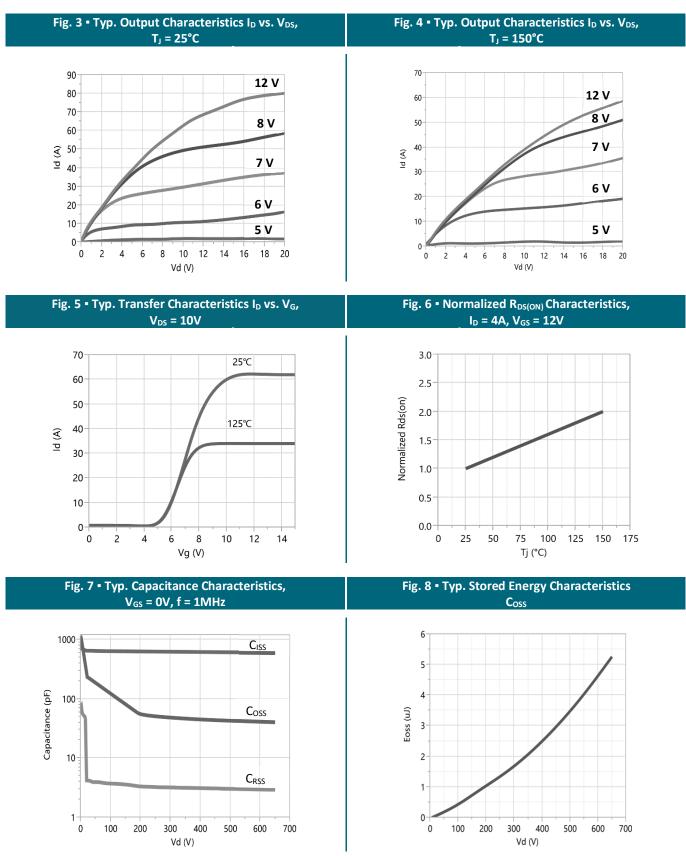
THERMAL CHARACTERISTIC RATINGS

Items		Тур.	
Thermal Resistance Junction to Ambient Note 1	R _{thJA}	50°C/W	
Thermal Resistance Junction to Case	R _{thJC}	1.85°C/W	

Note:

1: Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper and 70μm thickness

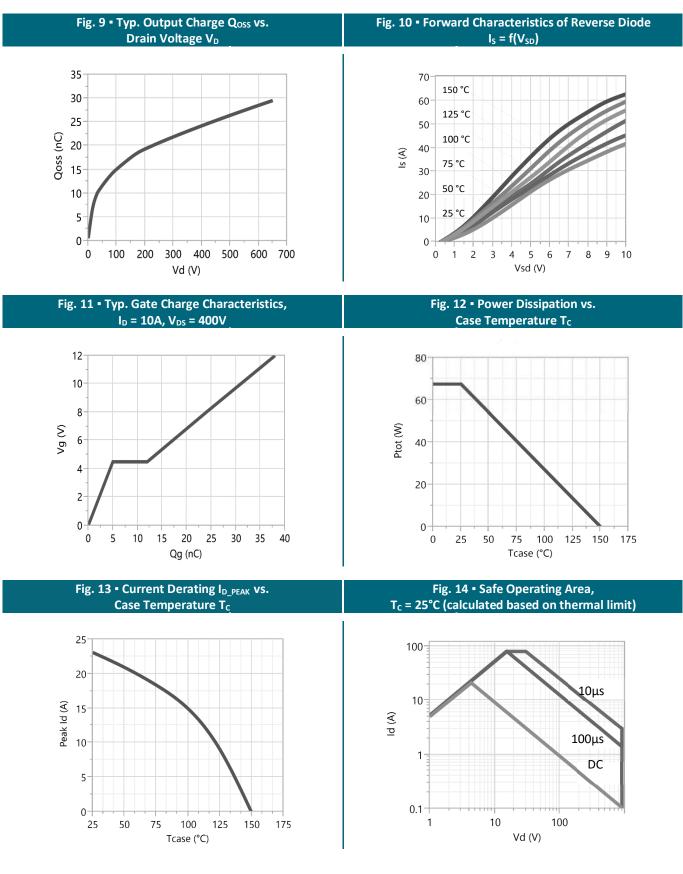
ELECTRICAL CHARACTERISTICS A T_c = 25°C, unless otherwise noted


Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	$V_{GS} = OV$	V _{DSS}	650			V
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 500 \mu A$	V_{GSth}	3.5	4	4.5	V
Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V$	I _{GSS}			150	nA
Gate-Source Leakage Current	$V_{GS} = -20V, V_{DS} = 0V$	I _{GSS}			-150	nA
Drain-Source Leakage Current	V_{DS} = 650V, V_{GS} = 0V	I _{DSS}		6	20	μA
Drain-Source Leakage Current	$V_{DS} = 650V, V_{GS} = 0V, T_J = 150^{\circ}C$	I _{DSS}		50		μΑ
Drain-Source On-State Resistance	$V_{GS} = 8V, I_D = 4A$	R _{DS(ON)}		130	160	mΩ
Drain-Source On-State Resistance	V_{GS} = 8V, I_D = 4A, T_J = 150°C	R _{DS(ON)}		250		mΩ
ltem	Condition	Symbol	Min.	Тур.	Max.	Unit
Dynamic Characteristics						
Input Capacitance	V_{DS} = 650V, V_{GS} = 0V, f = 1MHz	CISS		600		рF
Output Capacitance	V_{DS} = 650V, V_{GS} = 0V, f = 1MHz	Coss		40		рF
Reverse Transfer Capacitance	V_{DS} = 650V, V_{GS} = 0V, f = 1MHz	C _{RSS}		3		рF
Effective Output Capacitance, Energy Related Note 1	V_{DS} = 0 to 650V, V_{GS} = 0V	C _{O(ER)}		25		pF
Effective Output Capacitance, Time Related Note 2	V_{DS} = 0 to 650V, V_{GS} = 0V	C _{O(TR)}		45		pF
Total Gate Charge	V_{DS} = 400V, V_{GS} = 0 to 12V, I_{D} = 10A	Q_{G}		38		nC
Gate-Source Charge	V_{DS} = 400V, V_{GS} = 0 to 12V, I_{D} = 10A	Q _{GS}		8.5		nC
Gate-Drain Charge	V_{DS} = 400V, V_{GS} = 0 to 12V, I_{D} = 10A	Q_{GD}		4.7		nC
Turn-On Delay	V_{DS} = 400V, V_{GS} = 0 to 12V, I_D = 10A, R_G = 40 Ω	t _{D(ON)}		44		ns
Rise Time	$V_{DS} = 400V, V_{GS} = 0 \text{ to } 12V, I_D = 10A, \\ R_G = 40\Omega$	t _R		16		ns
Turn-Off Delay	$V_{DS} = 400V, V_{GS} = 0 \text{ to } 12V, I_D = 10A, \\ R_G = 40\Omega$	$t_{\text{D(OFF)}}$		40		ns
Fall Time	V_{DS} = 400V, V_{GS} = 0 to 12V, I_D = 10A, R_G = 40 Ω	t _F		12		ns
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Source-Drain Diode						
Source-Drain Voltage	$I_S = 5A$, $V_{GS} = 0V$	V _{SD}		1.3		V
Jource Drain voltage	I _S = 10A, V _{GS} = 0V	▼ SD		1.9		V
Reverse Recovery Time Note 3	$I_{S} = 10A, V_{GS} = 0V, V_{DS} = 600V,$ di/dt = 1000A/µs	t _{RR}		16		ns
Recovered Charge Note 4	$I_{S} = 10A, V_{GS} = 0V, V_{DS} = 600V,$ di/dt = 1000A/µs	Q _{RR}		26		nC

Notes:

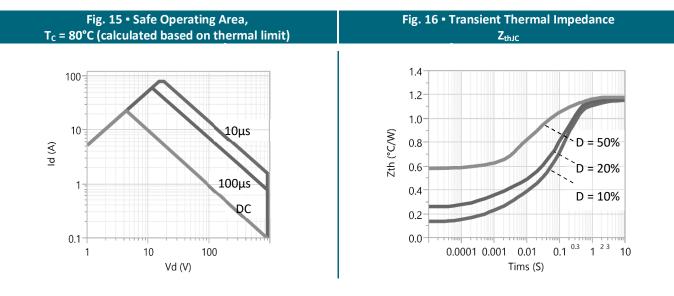
- 1: Equivalent capacitance to give same stored energy from 0V to the stated V_{DS}
- 2: Equivalent capacitance to give same charging time from 0V to the stated V_{DS}
- **3**: See diode reverse recovery test circuit and waveform, fig. 17 and fig 18
- 4: See diode reverse recovery test circuit and waveform, fig 17 and fig. 18

REFERENCE DATA

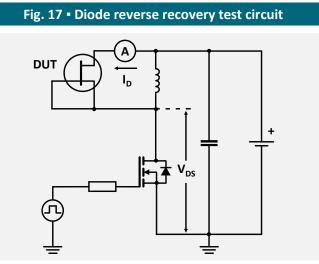

GPT65Z4YMR A Rev.002 A Date: 11/11/2022 A Page: 5

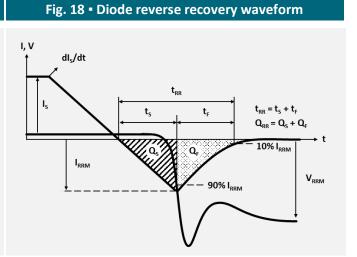
Copyright by MGT **A** www.mgt.co.com **A** All rights reserved **A** The information in this document is subject to change without notice.

MGT 🔺 Manufacturer Group of Technology


REFERENCE DATA

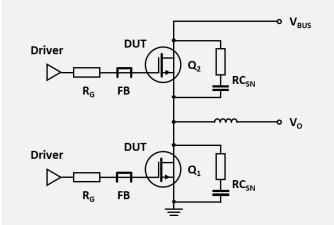
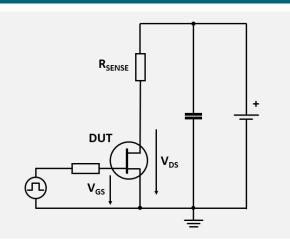
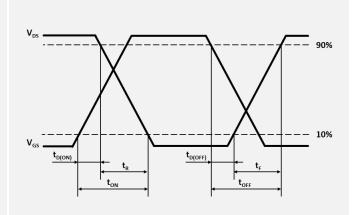
Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.




REFERENCE DATA

TEST CIRCUITS AND WAVEFORMS

Fig. 19 • Switching time test circuit

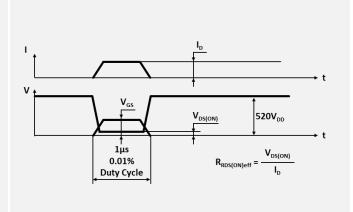
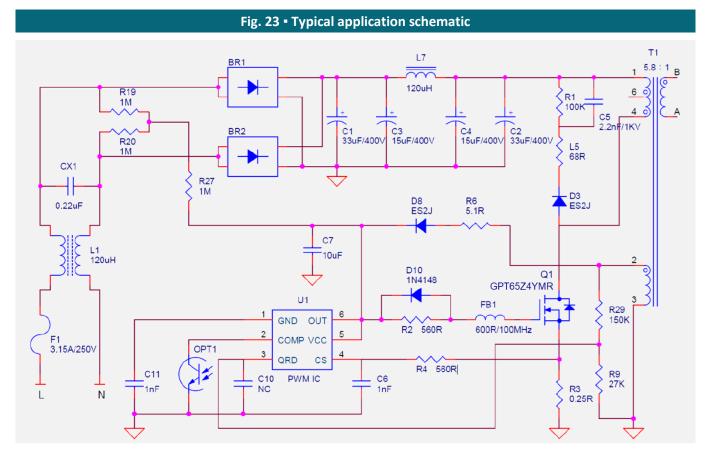

Fig. 21 • Dynamic R_{DS(ON)eff} test circuit

Fig. 20 • Switching time waveform

Fig. 22 • Dynamic R_{DS(ON)eff} waveform

GPT65Z4YMR ▲ Rev.002 ▲ Date: 11/11/2022 ▲ Page: 8


Copyright by MGT A www.mgt.co.com All rights reserved The information in this document is subject to change without notice.

LAYOUT GUIDELINES

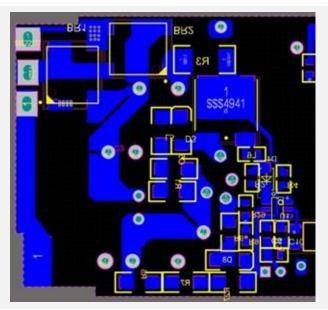

The layout of GaN FETs is very important for performance and EMI due to the GaN FETs are normally operated under high voltage and high current. Figure 24 and Figure 25 show an example of a good power layout loop:

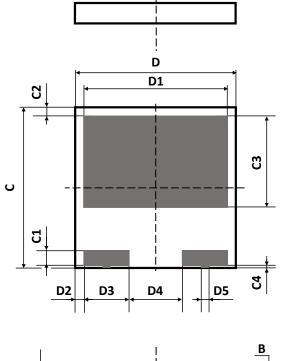
Fig. 24 • Top layer for FR4 1.6mm

MGT **A** Manufacturer Group of Technology

POWER-LOOP INDUCTANCE

The GaN FET has operated at a high transient current (di/dt) state. Therefore, the ringing, EMI, and voltage stress on GaN FET could be reduced by minimizing the inductance of the loop.

- 1. GND with a large area copper plane provides a low inductance ground for the GaN FET (Q1).
- 2. The power device GaN FET (Q1), diode (D3), and transformer (T1) are placed as close as possible to reduce the inductance.
- 3. The power device GaN FET (Q1) and resistor (R3) are placed as close as possible to reduce inductance and avoid abnormal switching.
- 4. Resistor (R3) and decoupling capacitor (C1) are placed as close as possible to minimize the current path and reduce the inductance.


SWITCHING NODE CAPACITANCE


GaN devices have very low switching losses due to its low output capacitance and fast switching with high transient voltage (dv/dt). Therefore, additional capacitance on the output node should be minimized.

- 1. Shrinking the area of copper reduces the extra capacitance of the switching node.
- 2. Switching Node Trace should not overlap with Power plane and GND plane.
- 3. The copper plane of the Switching Node is not used for heat dissipation of the circuit board.

PACKAGE OUTLINE AND PART MARKING



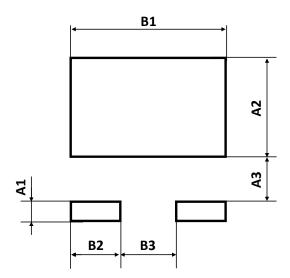
Sym	Millimeters
А	0.900 ± 0.050
В	0.203 ± 0.008
С	8.000 ± 0.050
C1	0.800 ± 0.025
C2	0.400 ± 0.025
C3	4.600 ± 0.050
C4	0.100 ± 0.025

DATE CODE

916

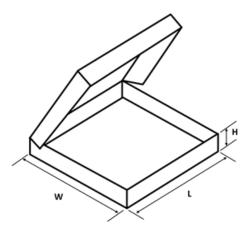
09		1	6
Week of the Month		Year	
		16	2022
01	1 st	17	2023
02	2 nd	18	2024
03	3 rd	19	2025
04	4 th	1A	2026
		1B	2026
52	52 nd		
		1F	2031

Date code:		
09:	e.g., week 09	
16:	e.g., 2022	


Sym	Millimeters
D	8.000 ± 0.050
D1	7.200 ± 0.050
D2	0.400 ± 0.025
D3	2.300 ± 0.025
D4	2.600 ± 0.025
D5	0.400 ± 0.025

Copyright by MGT **A** www.mgt.co.com **A** All rights reserved **A** The information in this document is subject to change without notice.

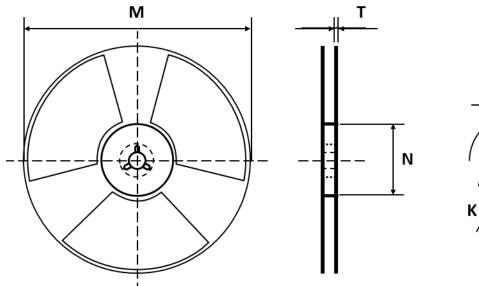
RECOMMENDED PAD LAYOUT FOR DFN 8080

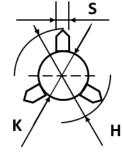

Sym	Millimeters
A1	1.000
A2	4.750
A3	2.000
B1	7.350
B2	2.450
B3	2.450

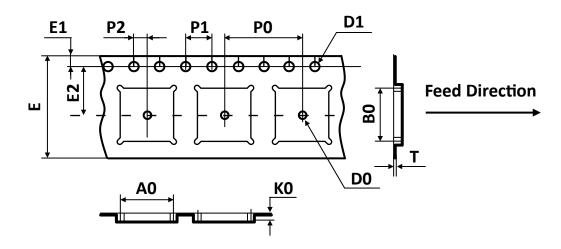
ORDERING INFORMATION

Part Number	Package	Packing	Quantity	Reel Diameter
GPT65Z4YMR	Thin DFN8080	Tape and Reel	2 500pcs	330mm (13")

REEL BOX DIMENSION All dimensions in mm

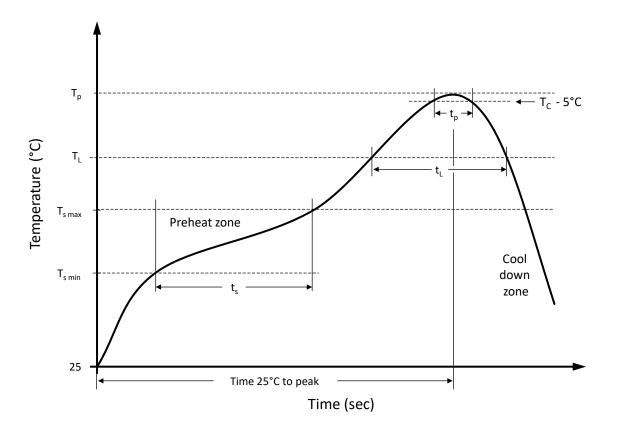

Outside Dimensions				
Ø 330mm reel				
W 350				
L	350			
Н	80			




REEL DIMENSIONS All dimensions in mm

Tape Size	Reel Size	М	N	т	Н	К	S
		Ø330.00	Ø102.00	2.00	13.00	10.50	2.00
24mm	Ø330	±0.20	±0.10	±2.0	+0.50 -0.20	±0.25	±0.25

TAPE DIMENSIONS All dimensions in mm


Package	A0	B0	К0	D0	D1	E	E1	E2	P0	P1	P2	Т
DFN8080	8.30	8.30	1.15	1.50	1.50	24.00	1.75	7.50	12.00	4.00	2.00	0.30
DFN0000	±0.10	±0.10	±0.10	±0.10	±0.10	±0.30	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05

GPT65Z4YMR ▲ Rev.002 ▲ Date: 11/11/2022 ▲ Page: 13

RECOMMENDED REFLOW SOLDERING PROFILE

Recommended reflow soldering conditions ▲ **Refer to JEDEC J-STD-020E**

Profile Features		Sn-Pb Eutetic Assembly	Pb-Free Assembly
Preheat temperature min.	$T_{s min}$	100 °C	150 °C
Preheat temperature max.	$T_{s max}$	150 °C	200 °C
Preheat time t_s from $T_{s min}$ to $T_{s max}$	ts	120 seconds	120 seconds
Ramp-up rate (T₁ to Tp)		max. 3 °C/second	max. 3 °C/second
Liquidous temperature	TL	183 °C	217 °C
Time t_L maintained above T_L	tL	150 seconds max.	150 seconds max.
Peak package body temperature	Tp	235°C	260°C
Timeframe of within 5°C below and up to max actual peak body temperature	t _p	20 seconds max.	30 seconds max.
Ramp-down rate $(T_L to T_p)$		max. 6 °C/second	max. 6 °C/second
Time 25°C to peak temperature		max. 6 minutes	max. 8 minutes

GPT65Z4YMR A Rev.002 A Date: 11/11/2022 A Page: 14

REVISION TABLE

Revision	Date	Status	Notes
001	12/07/2022	Initial release	Initial publication
002	11/11/2022	Second release	Characteristics update, Layout example

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <u>www.mgt.co.com.</u>