

MCSSA 5216 SERIES

METAL SHUNT RESISTOR

CURRENT METAL SHUNT RESISTOR ▲ Flat type

Ultra-low resistance values up to 0.05mΩ

Sulfur resistant construction

Extremely high overcurrent capability up to 600A

Customize version possible

AEC-Q200 qualified

SPECIFICATION

Item	Characteristics				
Operating Temperature Range	-55°C to +170°C				
Resistive Element Material	MnCuSn				
Resistance Range Note 1	$0.1 m\Omega$ to $0.25 m\Omega$				
Resistance Tolerance	±5% ▲ ±10%				
Power Rating at 70°C	12W				
Max. Working Voltage Note 2	$\sqrt{P\cdot R}$				
Max. Continuous Current	I _{MAX}	$\sqrt{P/R}$			
Temperature Coefficient Component Note 3	TCR _{COMP}	±150ppm			
Temperature Coefficient Element Note 4	< ±50ppm				
Coco siros	Size	Length	Width	Height	
Case sizes	5216	52mm	16mm	3mm	

Notes:

1: R Other values may be available, consult MGT.

2: V_W Working voltage is the maximum DC or AC (rms) continuous voltage, corresponding to the

rated power P at the operating temperature.

 $V_W = \sqrt{P \cdot R}$ [P = Rated power (W) at operating temperature; R = Resistance value (Ω)]

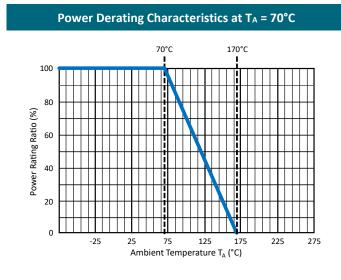
3: TCR_{COMP} Component TCR - Total TCR that includes the TCR effects of the resistor element and the copper

terminal

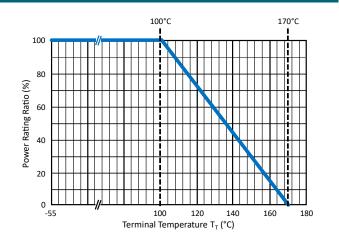
4: TCR_{ELEM} Element TCR - Only applies to the alloy used for the resistor element.

APPLICATIONS

Automotive	Battery	Renewable	Motors &	AC/DC	DC/DC	Welding
	Charger	Energy	Drives	Converter	Converter	Inverter
		*	-		=/ =	

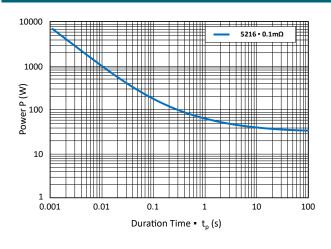

ELECTRICAL CHARACTERISTICS

Part number shows blister tape on plastic reel.


Size	R Resistance (mΩ)	P ₇₀ Power Rating at 70°C (W)	P ₁₀₀ Power Rating at 100°C (W)	TCR _{Comp} Temperature Coefficient Component (ppm)	TCR _{Elem} Temperature Coefficient Element (ppm)	Element Material	MGT Part Number
	0.10	12	10	±150	< ±50	MnCuSn	MCSSA5216T OOL10
F216	0.15	12	10	±150	< ±50	MnCuSn	MCSSA5216T \[OOL15
5216	0.20	12	10	±150	< ±50	MnCuSn	MCSSA5216T \[\] O0L20
	0.25	12	10	±150	< ±50	MnCuSn	MCSSA5216T \[\text{O0L25}

Note: : Enter the appropriate resistance tolerance code. J for ±5% or K for ±10%.

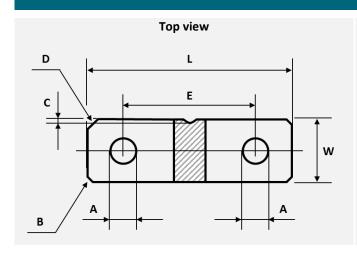
DERATING CURVE

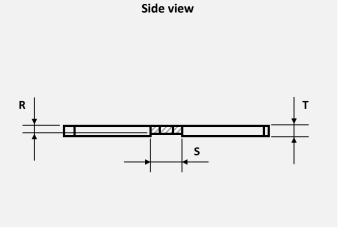


Power Derating Characteristics at T_T = 100°C

PULSE CAPABILITY

Pulsed Power Characteristics • MCSSA 5216 Series


Note:


Other pulsed power characteristics on request

PACKAGE OUTLINE ▲ All dimensions in mm

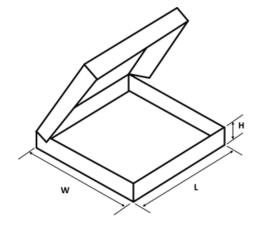
Size 5216

Size	R Resistance (mΩ)	L	w	E	A	B (x 45°)	С	D (x 45°)	R (Ref.)	S (Ref.)	т
	0.10	52.0±0.3	16.0±0.15	33.7±0.15	Ø6.6±0.1	1.0±0.15	3 max.	3.0±0.15	2.4	7.5	3.0±0.5
F24 <i>C</i>	0.15	52.0±0.3	16.0±0.15	33.7±0.15	Ø6.6±0.1	1.0±0.15	3 max.	3.0±0.15	2.4	7.5	3.0±0.5
5216	0.20	52.0±0.3	16.0±0.15	33.7±0.15	Ø6.6±0.1	1.0±0.15	3 max.	3.0±0.15	2.4	7.5	3.0±0.5
	0.25	52.0±0.3	16.0±0.15	33.7±0.15	Ø6.6±0.1	1.0±0.15	3 max.	3.0±0.15	2.4	7.5	3.0±0.5

PRODUCT CODE

Example: MCSSA series \blacktriangle AEC-Q200 \blacktriangle Size 5216 \blacktriangle 0.10m Ω \blacktriangle ±5% \blacktriangle 12W \blacktriangle Tray

MC	SSA	52	16	1	Г			C)	OL:	10
Se	ries	Dimer	nsions	Packa	aging	Toler	ance	Power	Rating	Resis	tance
Code	Desc.	Code	Size	Code	Desc.	Code	%	Code	P ₇₀ (W)	Code	mΩ
MCSSA	AEC-Q200	5216	5216	Т	Tray	K	±5 ±10	0	12	0L10 0L15 0L20 0L25	0.10 0.15 0.20 0.25


STORAGE AND HANDLING CONDITIONS

Floor life	Temperature	Humidity	MSL
Unlimited	T _A = 22 to 28°C	RH = 40 to 75%	1

PACKAGING

Size	Quantity	Quantity (pcs)	L x W x H (mm)
	Box (pcs)	Outer Carton	Outer Carton
5216	100	100	190 x 110 x 50

RELIABILITY TESTS • STANDARD

Standard: JIS C 5202, MIL-STD 202

No.	Test	Test Specification	Test Standard	Test Limits
1	Short Time Overload	Loading 5 times rated power for 5sec	JIS C 5202-5.5	ΔR: ±(1%+0.0005Ω)
2	Temperature Coef- ficient of Re- sistance (T.C.R.)	+25°C to +125°C $TCR(ppm/^{\circ}C) = \frac{\Delta R}{R \cdot \Delta T} \cdot 10^{6}$	JIS C 5202-5.2	Refer to electrical specification.
3	Moisture Resistance	The specimens shall be placed in a chamber and subjected to a relative humidity of $90^{\circ}98\%$ percent and a temperature of 25°C / 65°C with 10 cycles.	MIL-STD-202, Method 106	ΔR: ±(1%+0.0005Ω)
4	High Temperature Exposure	The resistor is exposed in the heat chamber 170°C for 1000 hrs.	JIS C 5202-7.2	ΔR: ±(1%+0.0005Ω)
5	Load Life	Apply rated power for 1000 hours with 1.5 hours ON and 0.5 hour OFF.	JIS C 5202-7.10	ΔR: ±(1%+0.0005Ω)
6	Thermal Shock	-55°C to +155°C, 1000 cycles, 15 min at each extreme.	MIL-STD-202 Method 107	ΔR: ±(1%+0.0005Ω)
7	Vibration	5 g's for 20 min., 12 cycles each of 3 orientations.	MIL-STD-202 Method 201	ΔR: ±(0.5%+0.0005Ω)
8	Biased Humidity	The specimens shall be placed in a chamber and subjected to a relative humidity of 85% percent and a temperature of 85°C for 1000hrs.	MIL-STD-202 Method 103	ΔR: ±(1%+0.0005Ω)

REVISION TABLE

Revision	Date	Status	Notes
001	01/10/2021	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, undertake, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.