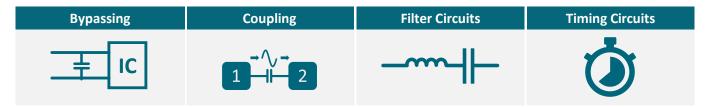


SPECIFICATION

Item		Characteristic	CS			
Related Documents	IEC 60384-2					
Rated Temperature Range		-40°C to +85°	С			
Usable Temperature Range Note 1		-40°C to +110)°C			
Capacitance Range	C_R	0.15μF to 10μ	ιF			
Capacitance Tolerance	ΔC	±2% ▲ ±5% ▲	±10%			
Rated DC Voltage	$V_{R DC}$	100V _{DC} ▲ 250	V _{DC} ▲ 400V _{DC}	▲ 630V _{DC}		
Rated AC Voltage	V _{R AC}	63V _{AC} ▲ 160V	/ _{AC} ▲ 200V _{AC} ▲	220V _{AC}		
		f (k	Hz)	0.15	0.15μF < C ≤ 10μF	
Dissipation Factor	tan δ	1			≤ 1%	
		1	0		≤ 1.5%	
			C _R ≤ 0	Ͻ.33μF	$C_R > 0.33 \mu F$	
Insulation Resistance Note 2	R _{INS}	$V_R \leq 100 V_{DC}$	≥ 1	0GΩ	≥ 1GΩ x μF	
		$V_R > 100V_{DC}$	≥ 3	0GΩ	≥ 10GΩ x μF	
Withstand Voltage Note 3	V _w	1.6 x V _R applie	ed for 2 sec. (d	for 2 sec. (cut off current 10mA)		
	Length (mm)	100V _{DC}	250V _{DC}	400V _{DC}	630V _{DC}	
	≤ 14	6V/μs	10V/μs	14V/μs	20V/μs	
	19	3V/μs	7V/μs	10V/μs	15V/μs	
Maximum Pulse Rise Slope	27	2V/μs	4V/μs	6.5V/μs	10V/μs	
dV/dt	33	1.5V/μs	2.5V/μs	4V/μs	6V/μs	
	38	1V/μs	2V/μs	3V/μs	4V/μs	
	48	1V/μs	2V/μs	2V/μs	2V/μs	

Notes:

3:

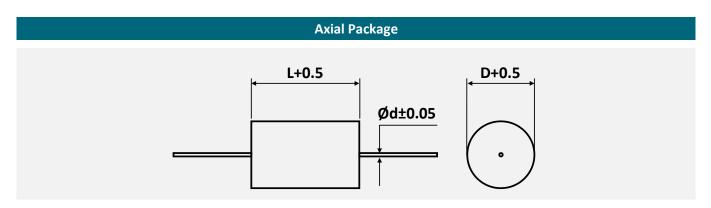

1: Derating ratio of rated voltage +85°C to +110°

Terminal to terminal at 20°C \pm 5°C 2: Terminal to terminal at 20°C ± 5°C

1.25% per °C for rated DC voltage

Voltage charge time: 1minute; Voltage charge: 100VDC Slow-up voltage speed: C ≤ 10μF: 5sec / C > 10μF: 10sec

APPLICATIONS



ELECTRICAL CHARACTERISTICS

V	C _R	Dimensio	ons (mm)	Ød ± 0.05	Part Number ^{Note}	
V _R	(μF)	L + 0.5	D + 0.5	(mm)	Part Number	
	1	19	10	0.8	MET-105 0100 DB0000	
	1.5	27	11	0.8	MET-155 0100 DB0000	
100V _{DC}	2.2	27	12	0.8	MET-225 0100 DB0000	
	3.3	27	14	0.8	MET-335 0100 DB0000	
63V _{AC}	4.7	33	14.5	0.8	MET-475 0100 DB0000	
	6.8	33	17	0.8	MET-685_0100DB0000	
	10	33	20	0.8	MET-106 0100 DB0000	
	0.68	27	10	0.8	MET-684_0250DB0000	
	1	27	11.5	0.8	MET-105 0250DB0000	
2501	1.5	27	11.5	0.8	MET-155 0250DB0000	
250V _{DC}	2.2	33	14	0.8	MET-225 0250 DB 0000	
1601	3.3	33	16	0.8	MET-335 0250DB0000	
160V _{AC}	4.7	38	20	0.8	MET-475 0250 DB0000	
	6.8	38	24	0.8	MET-685 0250DB0000	
	10	48	23	0.8	MET-106 0250 DB0000	
	0.33	27	10	0.8	MET-334 0400 DB0000	
	0.47	27	12.5	0.8	MET-474 0400 DB0000	
400V _{DC}	0.68	33	12.5	0.8	MET-684_0400DB0000	
400V _{DC}	1	33	14.5	0.8	MET-105 0400 DB0000	
200V _{AC}	1.5	33	17.5	0.8	MET-155 0400DB0000	
ZUUVAC	2.2	38	20	0.8	MET-225 0400 DB0000	
	3.3	38	27	0.8	MET-335_0400DB0000	
	4.7	38	30	0.8	MET-475 0400DB0000	
	0.15	27	10.5	0.8	MET-154_0630DB0000	
	0.22	27	11.5	0.8	MET-224_0630DB0000	
630V _{DC}	0.33	33	13	0.8	MET-334_0630DB0000	
DSOV _{DC}	0.47	33	14	0.8	MET-474_0630DB0000	
220V _{AC}	0.68	33	17.5	0.8	MET-684_0630DB0000	
ZZUVAC	1	38	21	0.8	MET-105 0630 DB0000	
	1.5	38	25	0.8	MET-155_0630DB0000	
	2.2	38	28	0.8	MET-225 0630 DB0000	

Note: Enter the appropriate tolerance code \square from the product code table

PACKAGE OUTLINE ▲ All dimensions in mm

MGT

Manufacturer Group of Technology

PRODUCT MARKING

Marking	Details		
	No.	Description	
1 2 3 <u>4</u>	1	Manufacturer Logo *	
	2	Nominal capacitance in μF	
(HJC) 225 K 2001	3	Capacitance tolerance	
7 630 MET 5 2010070 5	4	Date code	
6	5	Series name	
	6	Production no.	
L≤10.5mm H L13 to 33mm HJC	7	DC rated voltage	

DATE CODE & APPLICATION CATEGORY

Example:

Date code

2001: 2001 = 1st week of 2020

Lot number

2010070: 20 = Year, here 2020

1 = Month, here January

0001 to XXXX = Serial number

2	20		01
Υ	ear	W	'eek
19	2019	01	1 st
20	2020	02	2 nd
21	2021	03	3 rd
22	2022	04	4 th
23	2023	05	5 th
			•••
30	2030	53	53 rd

PRODUCT CODE

Example: MET series \triangle 2.2 μ F \triangle 630 V_{DC} \triangle ±10% \triangle Axial \triangle L x D = 38 x 28mm \triangle Bulk

M	ET-	22	25	ŀ	(06	30	[)	E	3	()	0	0	C)
Sei	ries	Capac Code (p	Note1	Capaci Toler (%	ance	Rat Volt (V _I	age		tage vpe		aging pe		ad uration		tch ım)		ad n (mm)
Code	Series	Code	μF	Code	Tol.	Code	VDC	Code	Туре	Code	Туре	Code	Style	Code	mm	Code	mm
MET-	MET-	154 474 105 225 106	0.15 0.47 1 2.2 10	G J K	±2 ±5 ±10	0100 0250 0400 0630	100 250 400 630	D	DC	В	Bulk	0	Axial	00	Axial	0	Axial

Note:

1 Capacitance code expressed in pF. The first two digits represent significant figures.
The last digit specifies the total number of zeros to be added.

REFERENCE DATA

Fig. 1 • Capacitance Drift vs. Ambient Temperature

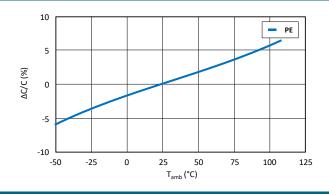


Fig. 2 • Insulation Resistance vs. Ambient Temperature

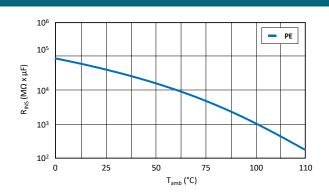


Fig. 3 - Dissipation Factor vs. Ambient Temperature

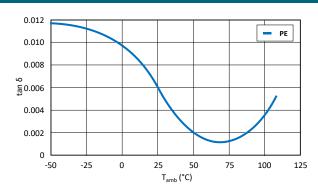


Fig. 4 • Dissipation Factor vs. Frequency

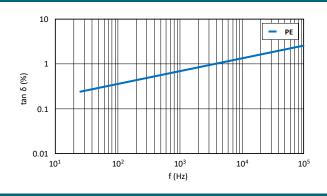


Fig. 5 • Capacitance Drift vs. Frequency

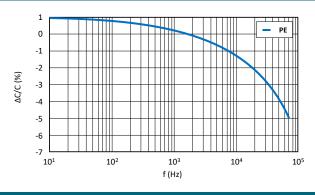


Fig. 6 - Impedance vs. Frequency - Typical Curve

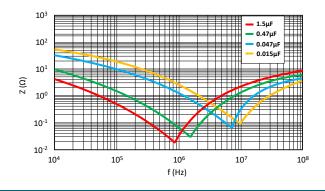


Fig. 7 - Max. RMS Voltage vs. Frequency - 100V_{DC}/63V_{AC}

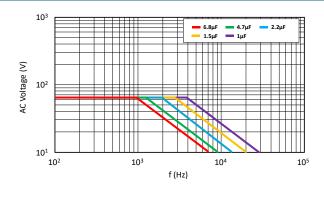
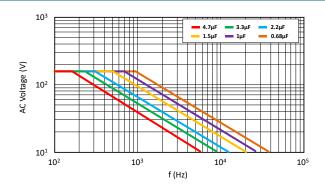



Fig. 8 • Max. RMS Voltage vs. Frequency • 250V_{DC}/160V_{AC}

REFERENCE DATA

Fig. 9 - Max. RMS Voltage vs. Frequency - 400V_{DC}/200V_{AC}

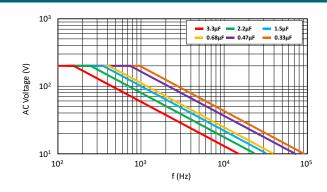


Fig. 10 • Max. RMS Voltage vs. Frequency • 630V_{DC}/220V_{AC}

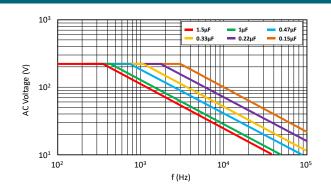


Fig. 11 • Max. DC Voltage vs. Temperature

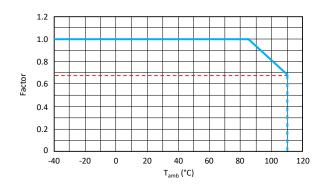
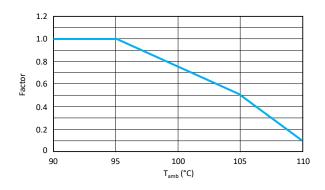



Fig. 12 • Permissible Current Derating vs. Temperature

MAXIMUM RMS CURRENT

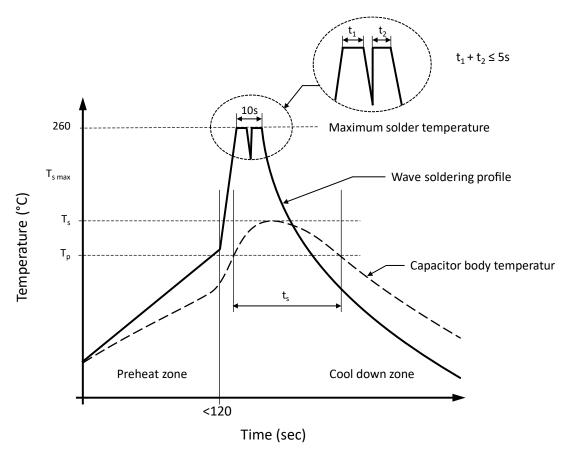
V	C_R	LxD	I _{RMS} (A) at f					
V _R	(μF)	(mm)	15.75kHz	35kHz	45kHz	65kHz	80kHz	100kHz
	1	19 x 10	1.70	1.85	1.90	1.92	1.95	2.00
	1.5	27 x 11	1.83	1.90	1.95	2.00	2.05	2.14
100V _{DC}	2.2	27 x 12	1.90	1.98	2.00	2.10	2.20	2.30
A	3.3	27 x 14	2.30	2.45	2.50	2.55	2.65	2.65
63V _{AC}	4.7	33 x 14.5	2.70	2.90	2.95	3.05	3.15	3.15
	6.8	33 x 17	3.20	3.50	3.60	3.65	3.70	3.71
	10	33 x 20	4.28	4.36	4.42	4.60	4.80	4.80
	0.68	27 x 10	1.31	1.58	1.67	1.80	1.89	2.03
	1	27 x 11.5	1.53	1.85	1.94	2.07	2.19	2.35
250V _{DC}	1.5	27 x 11.5	1.80	2.20	2.40	2.60	2.80	2.95
	2.2	33 x 14	1.80	2.15	2.30	2.50	2.70	2.90
160V _{AC}	3.3	33 x 16	2.20	2.70	2.90	3.12	3.20	3.20
100 VAC	4.7	38 x 20	2.35	2.90	3.10	3.32	3.44	3.44
	6.8	38 x 24	2.80	3.45	3.76	4.08	4.16	4.16
	10	48 x 23	4.20	5.30	5.69	6.10	6.41	6.41
	0.22	27 40	1.00	4 22	4.45	4.70	4.00	2.00
	0.33	27 x 10	1.00	1.32	1.45	1.70	1.80	2.00
	0.47	27 x 12.5	1.20	1.60	1.80	2.00	2.20	2.40
400V _{DC}	0.68	33 x 12.5	1.18	1.61	1.77	2.00	2.18	2.36
A	1	33 x 14.5	1.80	2.45	2.60	3.00	3.20	3.50
200V _{AC}	1.5	33 x 17.5	2.40	3.20	3.50	3.40	3.30	3.20
	2.2 3.3	38 x 20	2.80	3.65 4.05	4.00	3.90	3.75	3.60 4.00
	3.3 4.7	38 x 27 38 x 30	3.10 3.50	4.05	4.40 4.80	4.35 4.75	4.15 4.55	4.00
	4.7	38 X 30	3.50	4.45	4.80	4.75	4.55	4.40
	0.15	27 x 10.5	1.02	1.36	1.51	1.70	1.85	2.03
	0.22	27 x 11.5	1.08	1.44	1.60	1.80	1.96	2.15
	0.33	33 x 13	1.19	1.59	1.77	2.00	2.17	2.38
630V _{DC}	0.47	33 x 14	1.32	1.75	1.92	2.21	2.38	2.64
A	0.68	33 x 17.5	1.49	2.04	2.21	2.51	2.72	2.94
220V _{AC}	1	38 x 21	2.04	2.72	2.98	3.40	3.74	4.08
	1.5	38 x 25	2.55	3.50	3.80	3.70	3.60	3.50
	2.2	38 x 28	3.00	3.95	4.30	4.20	4.05	3.90

Note: Maximum capacitor surface temperature $T_S \le 110^{\circ}C$; Maximum body temperature rise $\Delta T \le 10^{\circ}C$

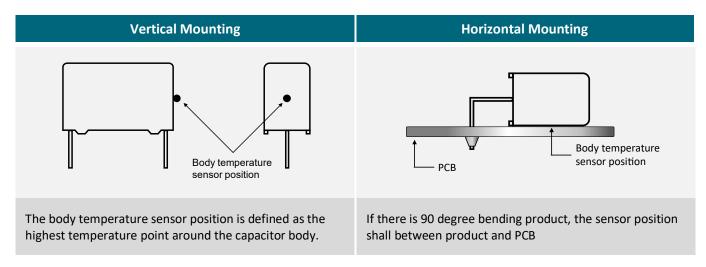
$$I_{RMS} = \frac{I_{p-p}}{2 \cdot \sqrt{2}}$$

No.	Category	Specification						
1	Scope	This specification applies to capacitors for general electronics applications. Reference standards: IEC 60384-2						
2	Product Name	Metallized polyester film capacitor, Ty	/pe MET					
3	Construction	Dimensions: 1 = Element 2 = Metal spray 3 = Lead wire 4 = Inner coating	Refer to dimensions drawing 2 Metallized Polyester film Special solder. (Lead Free) compliant to RoHS directive Tinned wire (Cu wire) or tinned copper clad-steel wire (CP wire). (Lead Free) compliant to RoHS directive Epoxy resin filled. (UL-94V-0 Standard)					
4	Atmospheric and Temperature Characteristics	tests is as follows: Ambient temperature: Relative humidity Air pressure If there may be any doubt on the rest Ambient temperature: Relative humidity: Operating temperature range Lowest operating temperature: Maximum operating temperature: The capacitor can be operated up to 1 Derating ratio of rated voltage +85°C to 1 The temperature is measured at the requilibrium. Rated temperature range	Polyester tape wrapping. (UL-510) and range of atmospheric conditions for making measurements and 15 to 35°C 45% to 85% 86 to 106 kPa ults, measurements shall be made within the following limits. 20°C ± 5°C 60 to 70% -40°C +110°C (case-temperature) with specified voltage-derating 10°C case-temperature (according to the power to be dissipated). to +110°C: 1.25% per °C for V _{RDC} nottest point of the case when the capacitor has reached its thermal -40°C to +85°C of ambient temperature for which the capacitor can be operated					
5	Electrical Characteristics	Rated voltage: Category voltage: Rated upper limit temperature: Usable upper limit temperature: Capacitance range: Capacitance tolerance:	V_R at 85°C					

No.	Category	Specification							
		Dissipation factor tanδ (%): LCR meter: HP-4284A, at 20°C ± 5°C							
		f (kHz)	0.15μF < C ≤ 10μ						
		1	≤1.00%						
		10 ≤1.50%							
		Insulation resistance between terminals							
		Test conditions:							
		Temperature: 20°C ± 5°C							
		Voltage charge:	100V _{DC}						
				C ≤ ().33µF	C > 0.33µF			
		Performance:	$V_R \le 100V_{DC}$		r voltage charge nute ≥ 10GΩ	After voltage charge 1 minute ≥ 1GΩ x μF			
		T CITOTITIANICE.	V > 100V		r voltage charge	After voltage charge			
			$V_R > 100V_{DC}$	1 mi	nute ≥ 30GΩ	1 minute \geq 10G Ω x μ F			
		Test voltage between	terminals						
		$1.6 \times V_{RDC}$ applied for 2	2 sec, at 20°C ±5°	°C					
		Cut off current:	••						
		Ramp/rise time:	$C \le 10 \mu F$: 5 sec $C > 10 \mu F$: 10 sec						
		Performance: There shall be no dielectric breakdown or other damage							
		Dielectric strength between terminal and enclosure							
5	Electrical	Apply 200% of rated voltage between terminals and enclosure for 2 to 5 sec. Foil method							
3	Characteristics	Method of the test described as below							
		body of the capacitor	metal foil shall be closely wrapped around the ody of the capacitor to a distance of 2mm rm the terminations as shown in fig 1.						
		Performance:	There shall be	no dielectric br	eakdown or othe	r damage			
		Test Item	The test capac lowing table, a	itor shall be kep nd it shall be re	ot in the testing o epeated for 5 cycl	ven and kept at condition of fol- es successively. After the test, the dition for 2 hours			
			Conditions			Performance			
			Step	Temperature					
		Rapid change of	1	-40 ± 3°C	30 ± 3 min	Capacitance change			
		temperature	2	Ordinary	3 min or less	∆C/C ≤ ± 10%			
		(IEC68-2-14 Na)	3	+110 ± 2°C	30 ± 3 min	tan δ change ≤ 0.5% at 1kHz			
			4	Ordinary	3 min or less	R insulation ≥ 50 % of limit value			


No.	Category		Specification	
		Test Item	Conditions	Performance
6	Mechanical Characteristics	Robustness of terminations (IEC68-2-21)	Tensile Ua1 A load of 10 N (1.0kg) shall be gradually applied to the terminal in the axial direction and held thus for 10 sec Bending Ub methode 1 While a load of 500g applied to the lead wire, the body of the capacitor shall be bent 90° and returned to the original position. This operation shall be conducted in a few seconds. Then the body shall be bent 90° at the same speed in the opposite direction and returned to the original position	There shall be no such mechanical damage as terminal damage etc.
		Solderability (IEC68-2-20 Ta)	Solder bath: 245°C ± 5°C Immersion time:2.5±0.5sec Visual examination	At least 95% of the circumferential face of lead wire up to immersed level shall be covered with new solder
		Resistance to soldering heat (IEC 68-2-20 Tb)	Solder bath: $260 ^{\circ}\text{C} \pm 5 ^{\circ}\text{C}$ Immersion time: $10\pm1\text{sec}$ Thickness of heat shunt (Printed wiring board): 1.6mm Capacitance at 1kHz $\tan\delta$ at 1kHz	Capacitance change $ \Delta C/C \le \pm 2\%$ tan δ change $\le 0.5\%$ at 1kHz
		Vibration proof (IEC68-2-6 Fc)	The frequency shall be varied form from 10Hz to 55Hz at 1.5mm amplitude and back to 10Hz in approximately 1-minute intervals.	Bending strength: There shall be no open or short-circuiting and the connections must be stabilized.
7			This motion shall be applied for a period of 2 hours in each of 3 mutually perpendicular directions. During the last 30 min of vibration in each direction, checks shall be made for open or short-circuit and interruption	Appearance: There shall be no such mechanical damage as terminal damage etc.
		Damp heat steady state (IEC68-2-3 Ca)	The capacitor shall be stored at a temperature of $40 \pm 2^{\circ}\text{C}$ and relative humidity of 90% to 95% for 1000 hours. And then the capacitor shall be subjected to standard atmospheric conditions for 1 to 2 hours, after which measurement shall be made	Capacitance change $ \Delta C/C \le \pm 5\%$ tan δ change $\le 0.5\%$ at $1kHz$ R insulation $\ge 50\%$ of limit value
		Electrical endurance (IEC 60384-2)	125% of category voltage shall be applied to the capacitor at a temperature of 110 \pm 2°C for 1000 hours. Then the capacitor shall be subjected to standard atmospheric conditions for 1 to 2 hours, after which measurement shall be made. The load resistor in series with the capacitor shall be 20Ω to $1k\Omega$.	Capacitance change $ \Delta C/C \leq \pm 10\%$ tan δ change $\leq 0.5\% \text{ at } 1\text{kHz}$ R insulation $\geq 50\%$ of limit value

No.	Category	Specification
		It should be noted that the solderability of the terminals may be deteriorated when stored barely in an atmosphere for a long period.
8	Storage conditions	It should not be located in particularly high temperature and high humidity, it must submit to the following conditions (Keeping in the original package) Temperature: 5°C to 35°C Relative humidity: ≤ 70% Storage period: ≤ 12 months (Following the manufacturing date marked on the label in package bag)
		Avoid wetting the capacitor by water, oil, salt and/or poisonous gas.
		If used the capacitor that overdue the storage time, it should be test, the characteristics of the capacitor or contact with our technical engineer.


RECOMMENDED WAVE SOLDERING PROFILE ▲ THT PACKAGE

Capacitor body temperature should follow the description below:

Profile Features		Polypropylene Film Capacitor	Polyester Film Capacitor
Capacitor body maximum temperature at preheating	T _P	≤ 110°C / 120 seconds	≤ 125°C / 120 seconds
Capacitor body maximum temperature at wave soldering	Ts	≤ 120°C / t _s ≤ 45 seconds	≤ 150°C / t _s ≤ 45 seconds

DETERMINING THE CAPACITOR BODY TEMPERATURE

SOLDERING SUGGESTIONS

When solder a capacitor, heat in soldering is conducted to the element of the capacitor from wire lead and an enclosure, and hence it should be noted that soldering under high temperature and a long period may cause deterioration of breakdown of capacitors. Be sure to solder within the recommended temperature condition range.

HAND SOLDERING

- a.) Soldering iron top temperature: ≤ 350°C
- b.) Soldering time: ≤ 3sec

If re-work or dipping twice in necessary, it should be done after the capacitor returned to the normal temperature. Suggestion time is 24 hours.

THT film capacitors are not suitable for reflow soldering.

When SMD components are used together with film capacitor, the film capacitor should not pass into the SMD adhesive curing oven. The film capacitor should be assembled after the SMD process.

In order to ensure proper conditions for manual or selective soldering, the body (surface) temperature of the film capacitor (T_s) must be ≤ 120 °C.

REVISION TABLE

Revision	Date	Status	Notes
001	01/10/2021	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, undertake, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.