1

MKP RFI CAPACITOR ▲ MKP-X2-PV

MKP-X2-PV SERIES

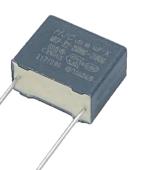
SMALL SIZE A X2 A RFI CAPACITOR

METALLIZED POLYPROPYLENE CAPACITOR ▲ THT type In accordance with UL, CUL ENEC, CQC safety regulations Flame retardant plastic case, epoxy resin sealed, UL 94V-0 Self-healing property

Radio Frequency Interference RFI capacitor ▲ Safety class X2 For standard across the line applications

SPECIFICATION

Item		Characteri	stics					
Related Documents	UL 60384–14:2014, IEC60384–14:2013, EN60384–14:2013, GB/T 6346.14–2015							
Rated Temperature Range		-40°C to +2	110°C					
Capacitance Range	C _R	0.0047µF t	to 2.2μF					
Capacitance Tolerance	ΔC	±10% ▲ ±2	20%					
Rated Voltage	V R AC	250V _{AC} to	310V _{AC}					
		Terminal t	o Terminal	Ter	mina	inal to Enclosure		
Insulation Resistance	R _{INS}	$\geq 15 G \Omega \text{ at } 100 V_{DC} (C_R \leq 0.33 \mu F) \qquad \geq 30 G \Omega \text{ at } 100 G \Omega a$			$100V_{\text{DC}}$			
		≥ 5GΩ × μF a (C _R > 0.33μF)		≥ 0.5	GΩ at	t 500V _{DC}		
Dissipation Factor Note 1	tan δ	0.1% or less						
Permissible DC Voltage	V _{DC}	560V _{DC}						
		Between T	erminal			1500V _c	oc for 3 sec	
Withstand Voltage	Vw	Between T	erminal and	l Enclosure		2050VA	c for 1 min	
		Nothing at	onormal sha	ll be found				
Maximum Pulse Rise Slope	Pitch (mm)	7.5mm	10.0mm	15.0mm	22	2.5mm	27.5mm	
dV/dt	560V _{DC}	500V/µs	400V/µs	300V/µs	18	30V/µs	120V/µs	


Note:

1: Measured at 1kHz, 20±5°C

APPLICATIONS

Across the	Antenna	Indoor	Interference Suppressors
Line Filter	Coupling	Applications	
)))((

RoHS

REACH

ELECTRICAL CHARACTERISTICS

N/	C _R		Din	nensions (n	nm)		tanδ	Dout Nous have Note 2
V _{R AC}	(μF)	W	Н	Т	Р	Ød	(%) ^{Note 1}	Part Number Note 2
	0.0047	10	8	4	7.5	0.6	0.10	MKP-472_0310AB107PV
	0.0056	10	8	4	7.5	0.6	0.10	MKP-562_0310AB107PV
	0.0068	10	8	4	7.5	0.6	0.10	MKP-682_0310AB107PV
	0.0082	10	8	4	7.5	0.6	0.10	MKP-822_0310AB107PV
	0.01	10	8	4	7.5	0.6	0.10	MKP-103 0310AB107 - PV
	0.015	10	8	4	7.5	0.6	0.10	MKP-153_0310AB107PV
	0.022	10	9	4	7.5	0.6	0.10	MKP-223_0310AB107PV
	0.033	10	9	5	7.5	0.6	0.10	MKP-333_0310AB107PV
	0.047	10	10	5	7.5	0.6	0.10	MKP-473_0310AB107PV
	0.056	10	11	5	7.5	0.6	0.10	MKP-563_0310AB107PV
	0.068	10	12	6	7.5	0.6	0.10	MKP-683_0310AB107PV
	0.082	10	12	6	7.5	0.6	0.10	MKP-823 0310AB107 - PV
	0.1	10	13	7	7.5	0.6	0.10	MKP-104_0310AB107PV
	0.0047	13	8	4	10	0.6	0.10	MKP-472_0310AB110PV
	0.0056	13	9	4	10	0.6	0.10	MKP-562_0310AB110PV
	0.0068	13	9	4	10	0.6	0.10	MKP-682_0310AB110PV
	0.0082	13	9	4	10	0.6	0.10	MKP-822_0310AB110PV
	0.01	13	9	4	10	0.6	0.10	MKP-103_0310AB110PV
	0.015	13	9	4	10	0.6	0.10	MKP-153_0310AB110PV
	0.022	13	9	4	10	0.6	0.10	MKP-223_0310AB110PV
	0.033	13	9	4	10	0.6	0.10	MKP-333_0310AB110PV
310V _{AC}	0.047	13	9	4	10	0.6	0.10	MKP-473_0310AB110PV
JIOVAC	0.056	13	9.5	4.5	10	0.6	0.10	MKP-563_0310AB110PV
	0.068	13	10	5	10	0.6	0.10	MKP-683_0310AB110PV
	0.082	13	11	5	10	0.6	0.10	MKP-823_0310AB110PV
	0.1	13	11	5	10	0.6	0.10	MKP-104_0310AB110PV
	0.12	13	12	6	10	0.6	0.10	MKP-124_0310AB110PV
	0.15	13	12	7	10	0.6	0.10	MKP-154_0310AB110PV
	0.22	13	14	8	10	0.6	0.10	MKP-224_0310AB110PV
	0.15	15	11.5	6	12.5	0.6	0.10	MKP-154_0310AB112PV
	0.22	15	12.5	7	12.5	0.6	0.10	MKP-224_0310AB112PV
	0.33	15	14	8.5	12.5	0.6	0.10	MKP-334_0310AB112PV
	0.39	15	15	9	12.5	0.6	0.10	MKP-394 0310AB112 - PV
	0.47	15	16	10	12.5	0.6	0.10	MKP-474_0310AB112PV
	0.56	15	17	11	12.5	0.6	0.10	MKP-564 0310AB112 - PV
	0.01	18	8	4	15	0.6	0.10	MKP-103 0310AB115 -PV
	0.015	18	8	4	15	0.6	0.10	MKP-153 0310AB115 -PV
	0.022	18	9	4	15	0.6	0.10	MKP-223 0310AB115 -PV
	0.033	18	9	4	15	0.6	0.10	MKP-333 0310AB115 -PV
	0.047	18	9	4	15	0.6	0.10	MKP-473 0310AB115 -PV
	0.056	18	9	4	15	0.6	0.10	MKP-563 0310AB115 -PV
	0.068	18	10	4	15	0.6	0.10	MKP-683 0310AB115 -PV
	0.082	18	10	5	15	0.8	0.10	MKP-823 0310AB115 -PV
	0.1	18	10	5	15	0.8	0.10	MKP-104_0310AB115PV

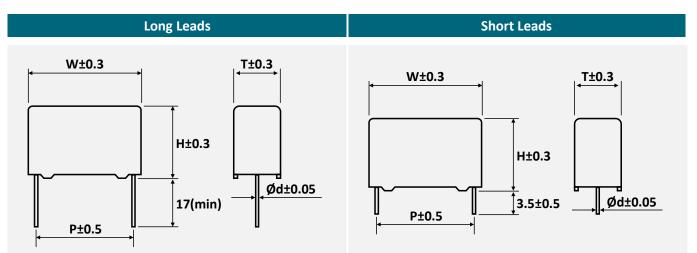
Notes

1 Measured at 1kHz, 20°C

2 Enter the appropriate tolerance and lead length code 🗌 from the product code table

MKP-X2-PV ▲ Rev.001 ▲ Date: 01/10/2021 ▲ Page: 2 Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

ELECTRICAL CHARACTERISTICS


	C _R		Din	nensions (n	tanδ	Dout Number Note 2		
V _{R AC}	(μF)	W	Н	Т	Р	Ød	(%) Note 1	Part Number Note 2
	0.15	26	11	5	22.5	0.8	0.10	MKP-154_0310AB122PV
	0.22	26	11	5	22.5	0.8	0.10	MKP-224_0310AB122PV
	0.33	26	12	6	22.5	0.8	0.10	MKP-334_0310AB122PV
	0.39	26	12	6	22.5	0.8	0.10	MKP-394_0310AB122PV
	0.47	26	14	6	22.5	0.8	0.10	MKP-474_0310AB122PV
	0.56	26	14	7	22.5	0.8	0.10	MKP-564_0310AB122PV
	0.68	26	15	7.5	22.5	0.8	0.10	MKP-684_0310AB122PV
	0.82	26	16	8	22.5	0.8	0.10	MKP-824_0310AB122PV
	1	26	17	9	22.5	0.8	0.10	MKP-105_0310AB122PV
	1.2	26	19.5	9	22.5	0.8	0.10	MKP-125_0310AB122PV
	1.5	26	21	10	22.5	0.8	0.10	MKP-155_0310AB122PV
310V _{AC}	1.8	26	23	12.5	22.5	0.8	0.10	MKP-185_0310AB122PV
	2.2	26	24	13.5	22.5	0.8	0.10	MKP-225_0310AB122PV
	2.2	26	22	15	22.5	0.8	0.10	MKP-225_0310AB122PV
	0.47	31	13.5	6	27.5	0.8	0.10	MKP-474_0310AB127PV
	0.56	31	14	6.5	27.5	0.8	0.10	MKP-564_0310AB127PV
	0.68	31	15.5	6.5	27.5	0.8	0.10	MKP-684_0310AB127PV
	0.82	31	16	7.5	27.5	0.8	0.10	MKP-824_0310AB127PV
	1	31	17	8	27.5	0.8	0.10	MKP-105_0310AB127PV
	1.2	31	17.5	9	27.5	0.8	0.10	MKP-125_0310AB127PV
	1.5	31	18.5	10	27.5	0.8	0.10	MKP-155_0310AB127PV
	1.8	31	20.5	12	27.5	0.8	0.10	MKP-185_0310AB127PV
	2.2	31	22	13	27.5	0.8	0.10	MKP-225_0310AB127PV

Notes

1 Measured at 1kHz, 20°C

2 Enter the appropriate tolerance and lead length code \square from the product code table

PACKAGE OUTLINE All dimensions in mm

REFERENCE DATA

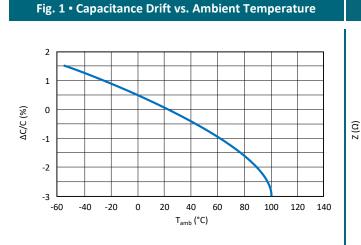
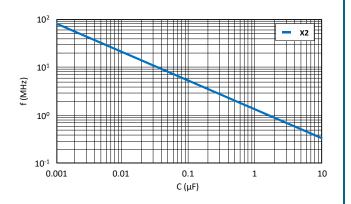



Fig. 3 • Resonant Frequency vs. Capacitance

PRODUCT CODE

Example: MKP-X2-PV (small size) series \blacktriangle 0.1µF \blacktriangle 310V_{AC} \blacktriangle ±10% \blacktriangle P=10mm \blacktriangle Bulk \blacktriangle Straight leads \blacktriangle 17mm lead length

М	KP-	1	04	k	٢	03	10	A	ι	E	3	1	L	1	0	1	_	-P	v
Sei	ries	Code	itance ^{Note 1} IF)	Capac Toler (%	ance	Rat Volt (V/	age	Volt Ty	0	Pack Ty	aging pe	Config	ad uration te 2	Pit (m		Length Not	ı (mm)		ecial rk ^{Note 4}
Code	Series	Code	μF	Code	Tol.	Code	VAC	Code	Туре	Code	Туре	Code	Style	Code	mm	Code	mm	Code	Туре
МКР	МКР	562 473 224 105 225	0.0056 0.047 0.22 1.0 2.2	K M	±10 ±20	0310	310	A	AC	В	Bulk	1	SL	07 10 12 15 22 27	7.5 10.0 12.5 15.0 22.5 27.5	1 2	17.0 3.5	-PV	See Note 4

Notes:

1 Capacitance code expressed in pF. The first two digits represent significant figures. The last digit specifies the total number of zeros to be added.

- 2 SL = Straight leads, for other lead configuration consult MGT please.
- 3 For other lead length consult MGT please.
- 4 PV = Small size version

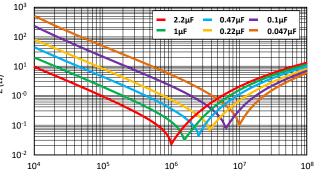


Fig. 2 • Impedance vs. Frequency • V_{RAC} = 310V

PRODUCT MARKING

Marking	Det	ails
	No.	
	1	
	2	No
5 HJC 2.2 uF K	3	
$\xrightarrow{\text{MKP-X2}} 310V^{\circ} 250V^{\circ} 275V^{\circ} 4$	4	
	5	
	6	Sa
	7	
U U	8	

Details							
No.	Description						
1	Manufacturer Logo						
2	Nominal capacitance in μF						
3	Capacitance tolerance						
4	AC rated voltage						
5	Series name						
6	Safety standard approvals						
7	Date code						
8	Application category						
9	Lot number						

DATE CODE & APPLICATION CATEGORY

Example:

Date code

2001: 2001 = 1st week of 2020

Application category

40/110/56B: 40 = Minimum temperature (- $40^{\circ}C$)

- 110 = Maximum temperature (+110°C)
- 56 = Days of damp heat test

B = Category of passive flammability

Lot number

2010001: 20 = Year, here 2020 1 = Month, here January

0001 to XXXX = Serial number

2	20	C)1
Ye	ear	W	eek
19	2019	01	1 st
20	20 2020 02		2 nd
21	2021	03	3 rd
22	2022	04	4 th
23	23 2023		5 th
30	2030	53	53 rd

MGT 🔺 Manufacturer Group of Technology

TECHNICAL SPECIFICATION

No.	Category		Specification				
1	Scope	capacitor.	ent for metallized polypropylene dielectric fixed pression and << across-the-line >> applications or our FAE for more details.				
2	Product Name	Metallized polypropylene film capacite	ог, Туре МКР				
3	Product Range	Operating temperature range:-40°C to +110°C (including temperature rise on unit surface)Rated AC voltage (50/60Hz)250V _{AC} to 310V _{AC} (560V _{DC} max.)Capacitance range:Refer to the individual drawingCapacitance tolerance:Refer to the individual drawing					
4	Appearance	 Marking shall be legible in the right place. Plating of lead wire shall be perfect without rust. Coating shall be without any crack, rent, pinhole etc. 					
5	Construction	The capacitor is enclosed in flame retation has two leads.	3 Metallized Polypropylene film Special solder. (Lead Free) compliant to RoHS directive Tinned wire. (Lead Free) compliant to RoHS directive Epoxy resin filled. (UL-94V-0 Standard) Plastic case. (UL-94V-0 Standard)				
6	Dimensions	As specified in the individual drawing.					
7	Conditional Standard Test	The test shall be conducted at a temperature of from 15°C to 35°C, a humidity of from 45% to 75%. However, the test shall be conducted at a temperature of 20±5°C, a humidity of 65±5% when doubt is entertained about judgment.					

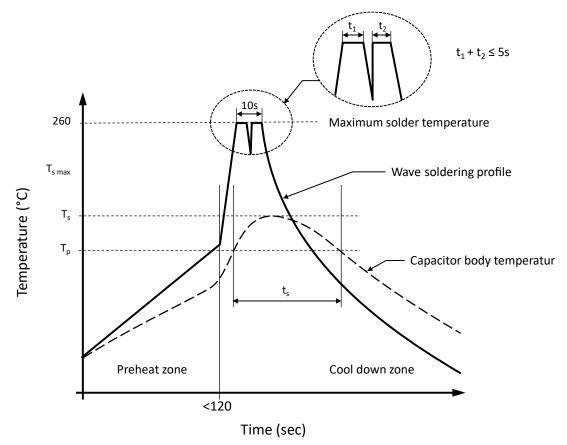
No.	Category		:	Specification	
		Test Item	Conditions		Performance
			Between terminals		
			Applied voltage	$1500V_{DC}$ for 3sec	
			Cut-off current	10mA DC	
			Domo / rico timo	C ≤ 2.2µF: 5sec	
		Voltage proof	Ramp / rise time	2.2 < C ≤ 10µF: 10sec	Nothing abnormal shall be
		(IEC60384-14, 4.2.1)			found.
			Between terminals and	d enclosure	
			Applied voltage	$2050V_{AC}$ for 1min	
			The capacitor shall be through a resistor of 2 charge and discharge.		
			Between terminals		
			15G Ω or more	When C ≤ 0.33µF at 100V _{DC}	
			$5G\Omega imes \mu F$ or more	When C > 0.33μF at 100V _{DC}	
			$2G\Omega imes \mu F$ or more	When C > 0.33µF at 500V _{DC}	
		Insulation resistance	Between terminals and	d enclosure	Within the limits stated under conditions.
		(IEC60384-14, 4.2.5)	$30G\Omega$ or more	at 100V _{DC}	conditions.
			$0.5G\Omega$ or more	at 500V _{DC}	
8	Character		When the reading of n becomes steady at a v $100\pm15V_{DC}$ or $500\pm50V$ nute ±5 seconds. Ambient temperature	alue after a voltage of / _{DC} is applied for 1 mi-	
		Capacitance (IEC60384-14, 4.2.2)	Measured at a frequer at 20 °C, 1V _{RMS} .	ncy of 1 ± 0.2 kHz,	Within a range of specified value
		Dissipation factor (IEC60384-14, 4.2.3)	Measured at a frequer at 20 °C, 1V _{RMS.}	ncy of 1 ± 0.2 kHz,	0.1% or less.
			Tensile strength		
			The load specified belo the terminal in its drav ally up to the specified for 10±1se.c	v-out direction gradu-	
			Lead wire diameter:	Over 0.5 to 0.8 mm	
			Tensile force:	10N	
		Termination	Bending strength		After the test, no breaking or
		Termination strength (IEC60384-14, 4.3)	While the load specifie the lead wire, the bod be bent 90° and return tion. This operation sh	y of the capacitor shall ned to the original posi- all be conducted in a	loosening of the terminal shall be found.
			few seconds. Then the 90°, at the same speed direction and returned tion.	l in the opposite I to the original posi-	
			Lead wire diameter:	Over 0.5 to 0.8 mm	
			Bending force:	5N	

No.	Category			
		Test Item	Conditions	Performance
		Vibration proof (IEC60384-14, 4.7)	The frequency shall be varied form from 10Hz to 55Hz at 1.5mm amplitude and back to 10Hz in approximately 1 minute, intervals. This motion shall be applied for a period of 2 hours in each of 3 mutually perpendicular di- rections. During the last 30 min of vibration in each di- rection, checks shall be made for open or short-circuiting and interruption.	Bending strength: There shall be no open or short- circuiting and the connections must be stabilized. Appearance: There shall be no such mechani- cal damage as terminal damage etc.
		Solderability (IEC60384-14, 4.5)	The lead wire shall be immersed into solder- ing bath at 245±5°C for 2.5±0.5sec up to the depth of 1.5+0.5/-0mm from the bottom of the body.	At least 95% of the circumferen- tial face of lead wire up to immersed level shall be covered with new solder.
8	Character	Soldering heat re- sistance (IEC60384-14, 4.4)	The lead wire shall be immersed into solder- ing bath and its depth of dipping shall be up to 1.5 +0.5/-Omm from the root of terminals by using a heat shielding plate. Temperature and duration of soldering hall be 350±10°C for 3.5±0.5sec or 260±5°C for 10±1sec. After the immersion is finished, the capacitor shall be let alone at ordinary temperature and humidity for 1±0.5hours.	Appearance: No remarkable change. Withstand voltage: Nothing abnormal shall be found, when a voltage specified in item "voltage- proof" is ap- plied for 1 minute. Insulation resistance: Insulation resistance shall con- form to Item "insulation re- sistance". Change rate of capacitance: $\Delta C/C \le \pm 3\%$ of the value before the test.
		Cold resistance (IEC60384-14, 4.11.4)	The capacitor shall be placed in the testing chamber at -40 ± 3 °C for $2\pm1/-0$ hours. After the test, the capacitor shall be let alone at the ordinary condition for 1.5 ± 0.5 hours and shall be satisfied with the performance in the performance column.	Change rate of capacitance: $\Delta C/C \le \pm 5\%$ of the value before the test.
		Dry heat resistance (IEC60384-14, 4.11.2)	The capacitor shall be placed in the testing oven at +110±2°C for 2+1/-0 hours. After the test, the capacitor shall be let alone at the ordinary condition for 1.5±0.5 hours and shall be satisfied with the performance in the per- formance column.	Insulation resistance: \geq 50% of the initial specified value. Change rate of capacitance: $\Delta C/C \leq \pm 5\%$ of the value before the test.

TECHNICAL SPECIFICATION

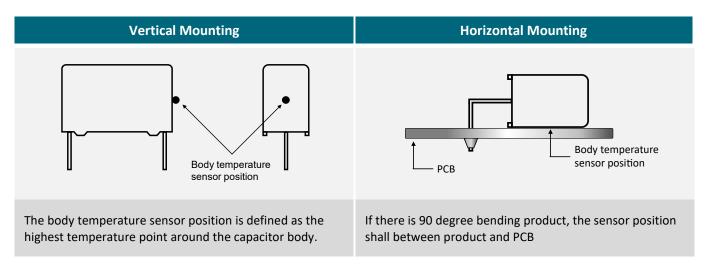
No.	Category	Specification				
		Test Item	Conditions	Performance		
8	Character F	Damp heat steady state (IEC60384-14, 4.12)	The capacitor under test shall be put in the testing oven and kept at condition of the temperature +40±2°C and the humidity at 90 to 95% for 56 days and then shall be let alone at ordinary condition for 1.5±0.5 hours. After the test, the capacitor shall be satisfied with the performance in the performance column.	Appearance: No remarkable change. Withstand voltage: [between terminals and enclo- sure] Nothing abnormal shall be found when a voltage of 2050V _{AC} is applied for 1 minute. Insulation resistance: [between terminals] 7.5GΩ or more (when C ≤0.33µF) at 100V _{DC} 2.5GΩ × µF or more (when C > 0.33µF) at 100V _{DC} [between terminals and enclo- sure] 15GΩ or more at 100V _{DC} Change rate of capacitance: $\Delta C/C \le \pm 5\%$ of the value before the test. Dissipation factor: $\le 0.15\%$ at 1kHz.		
		Rapid change of temperature (IEC60384-14, 4.6)	The capacitor under the test shall be kept in the testing oven and kept at condition of the temperature of -40±3°C for 30±3 minutes. After this, the capacitor shall be let alone at the ordinary temperature for 3minutes or less. After this, the capacitor under the test shall be kept in the testing oven and kept at condi- tion of the temperature of +110±2°C for 30±3 minutes. Then the capacitor shall be let alone at the ordinary temperature for 3 minutes or less. This operation shall be counted as 1 cy- cle, and it shall be repeated for 5 cycles suc- cessively. After the test, the capacitor shall be let alone at the ordinary condition for 1.5±0.5 hours and shall be satisfied with the performance in the performance column.	Appearance: No remarkable change. Insulation resistance: \geq 50% of the initial specified value. Change rate of capacitance: $\Delta C/C \leq \pm 10\%$ of the value before the test. Dissipation factor: $\leq 0.12\%$ at 1kHz.		

No.	Category	Specification				
		Test Item	Conditions		Performance	
8	Character	Endurance (IEC60384-14, 4.14)	The capacitor shall be s ance of 1000h at 110°C voltage and that once of shall be increased to 10 ond. After the test, the capacitor shall be satist performance.	C at a 125% of rated every hour the voltage DOOV _{RMS} for 0.1 sec-	Appearance: No remarkable change. Withstand voltage: [between terminals] Nothing abnormal shall be found when a voltage of $4.3 \times V_R =$ 1333V _{DC} is applied for 1 minute. [between terminals and enclo- sure] Nothing abnormal shall be found when a voltage of 2050V _{AC} is applied for 1 minute. Change rate of capacitance: Within $\Delta C/C \le \pm 10\%$ of the value before the test. Insulation resistance: [between terminals] 7.5G Ω or more (When C $\le 0.33\mu$ F) at $100V_{DC}$ 2.5G $\Omega \times \mu$ F or more (When C $> 0.33 \mu$ F) at $100V_{DC}$ [between terminals and enclo- sure] 3G Ω or more at $100V_{DC}$	
		Impulse voltage (IEC60384-14, 4.13)	The capacitor shall be subjected to a maximum of 24 impulses of the same polarity. If any three successive impulses are shown by the monitor to have had a waveform indicating that no self-healing breakdowns have oc- curred, then the capacitor shall be no more subjected to impulses.Impulse voltage X2 $C \le 1.0 \mu F$ $C \le 1.0 \mu F$ $V_P = 2.5 kV$ $C > 1.0 \mu F$ $V_P = \frac{2.5 kV}{\sqrt{C}}$		Appearance: No remarkable change. Others: There shall be no permanent breakdown or flashover. After impulse voltage, the capac- itor shall be subjected to high temperature loading (item rapid change of temperature).	



No.	Category	Specification							
	Approved Standard	Agency	gency Country Conditions					File Number	
9		UL	USA	UL60384-14 ΜKP 0.0047~10.0μF 250~310V _{AC} , 40/110/56/B			E149075-20120803		
		CSA	Canada	CAN/CSA-E 60384-14 ΜΚΡ 0.0047~10.0μF 250~310V _{AC} , 40/110/56/B			2294211		
		ENEC	Semko	EN 60384-14 MKP 0.0047~10.0µF 250~310V _{AC} , 40/110/56/B			SE-ENEC-2002895		
		СВ	Semko	IEC 60384-14 ΜΚΡ 0.0047~10.0μF 250~310V _{AC} , 40/110/56/B			SE-103415		
		CQC	China	GB/T6346.14-2015 ΜΚΡ 0.0047~10.0μF 250~310V _{AC} , 40/110/56/B			CQC09001029854		
		The ENEC	The ENEC mark was accepted in all European countries						
	Rated Voltage	Pitch		7.5mm	10mm	15mm	22.5	mm	27.5mm
10	Pulse Slope dV/dt at 560V _{DC}	dV/dt 5		500V/µs	400V/µs	300V/µs	180	√/µs	120V/µs
11	Storage Conditions	It should be noted that the solderability of the terminals may be deteriorated when stored barely in an atmosphere for a long period. It should not be in particularly high temperature and high humidity, it must submit to the following conditions (Keeping in the original package) Temperature: 5°C to 35°C Relative humidity: ≤ 70% Storage period: ≤12 months (Following the manufacturing date marked on the label in package bag) Avoid wetting the capacitor by water, oil, salt and/or poisonous gas. If used the capacitor that overdue the storage time, it should be test, the characteristics of the capacitor or contact with our technical engineer.							

MGT **A** Manufacturer Group of Technology


RECOMMENDED WAVE SOLDERING PROFILE A THT PACKAGE

Capacitor body temperature should follow the description below:

Profile Features		Polypropylene Film Capacitor	Polyester Film Capacitor	
Capacitor body maximum temperature at preheating	Τ _Ρ	≤ 110°C / 120 seconds	≤ 125°C / 120 seconds	
Capacitor body maximum temperature at wave soldering	Ts	\leq 120°C / t _s \leq 45 seconds	\leq 150°C / t _s \leq 45 seconds	

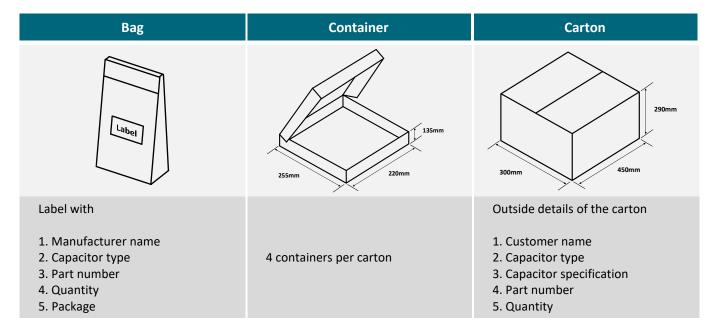
DETERMINING THE CAPACITOR BODY TEMPERATURE

SOLDERING SUGGESTIONS

When solder a capacitor, heat in soldering is conducted to the element of the capacitor from wire lead and an enclosure, and hence it should be noted that soldering under high temperature and a long period may cause deterioration of breakdown of capacitors. Be sure to solder within the recommended temperature condition range.

HAND SOLDERING

- a.) Soldering iron top temperature: ≤ 350°C
- b.) Soldering time: ≤ 3sec


If re-work or dipping twice in necessary, it should be done after the capacitor returned to the normal temperature. Suggestion time is 24 hours.

THT film capacitors are not suitable for reflow soldering.

When SMD components are used together with film capacitor, the film capacitor should not pass into the SMD adhesive curing oven. The film capacitor should be assembled after the SMD process.

To ensure proper conditions for manual or selective soldering, the body (surface) temperature of the film capacitor (T_s) must be $\leq 120^{\circ}$ C.

PACKAGING

REVISION TABLE

Revision	Date	Status	Notes
001	01/10/2021	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, undertake, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <u>www.mgt.co.com.</u>