

POWER FACTOR CORRECTION CAPACITOR

METALLIZED POLYPROPYLENE CAPACITOR ▲ THT type Low noise

AEC-Q200 on request, contact MGT for more details Self-healing property

Standard size ▲ Pitch 10mm, 15mm and 22.5mm **Especially for Power Factor Correction (PFC) circuits**

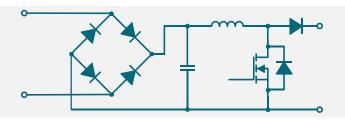
SPECIFICATION

Item		Characteristics				
Related Documents		IEC 60384-16				
Rated Temperature Range		-40°C to +85°C				
Usable Temperature Range Note 1	-40°C to +110°C					
Capacitance Range	C _R	0.01μF to 2.2μF				
Capacitance Tolerance	ΔC	±5% ▲ ±10%				
Rated DC Voltage	V_{RDC}	450V _{DC} ▲ 630V _{DC}				
Rated AC Voltage	V _{R AC}	200V _{AC} ▲ 220V _{AC}				
	tan δ	f (kHz)	C ≤ 1μF		1μF < C ≤ 2.2μF	
Dissipation Factor		1	≤ 0.1%		≤ 0.1%	
		100	≤ 1	.5%	≤ 1.2%	
Insulation Resistance Note 2	R _{INS}	C _R ≤ 0.33µ	F	$C_R > 0.33 \mu F$		
insulation resistance	NINS	> 30GΩ		>	· 10GΩ x μF	
Withstand Voltage Note 3	V _w	$1.6 \times V_R$ applied fo	r 2 sec. (c	ut off curr	ent 10mA)	
	Pitch (mm)	450V _{DC}		630V _{DC}		
Maximum Pulse Rise Slope	10	220V/μs		350V/μs		
dV/dt	15	160V/µs		250V/μs	•	
	22.5	100V/μs		160V/μs		

Notes:

1: Derating ratio of rated voltage +85°C to +110°C

2: Terminal to terminal at 20°C ± 5°C

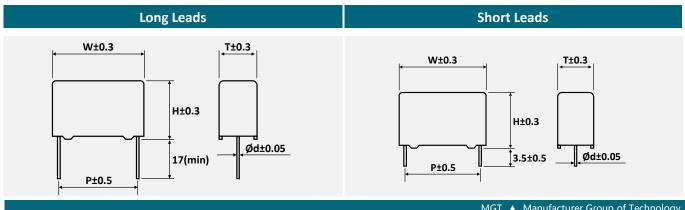

Terminal to terminal at 20°C ± 5°C

1.25% per °C for rated DC voltage

Voltage charge time: 1minute; Voltage charge: 100VDC Slow-up voltage speed: C ≤ 10μF: 5sec / C > 10μF: 10sec

APPLICATIONS

Power Factor Correction Circuits



ELECTRICAL CHARACTERISTICS

.,	C_R	Di	mensions (mr	n)	Р	Ød ± 0.05	Note
V _R	(μF)	W ± 0.3	H ± 0.3	T ± 0.3	(mm)	(mm)	Part Number ^{Note}
	0.047	13	9	4	10	0.6	MPBN473 0450 DB 10
	0.068	13	9	4	10	0.6	MPBN683 0450 DB 10
	0.1	13	10	5	10	0.6	MPBN104_0450DB_10_
	0.15	13	11	5.5	10	0.6	MPBN154_0450DB_10_
	0.22	13	12	6	10	0.6	MPBN224_0450DB_10_
	0.33	13	14	8	10	0.6	MPBN334_0450DB_10_
450V _{DC}	0.15	18	11	5	15	0.8	MPBN154_0450DB_15_
430 A DC	0.22	18	11	5	15	0.8	MPBN224_0450DB_15_
200V _{AC}	0.33	18	12	6	15	0.8	MPBN334_0450DB_15_
200 V AC	0.47	18	13	7	15	0.8	MPBN474_0450DB_15_
	0.68	18	14	8	15	0.8	MPBN684_0450DB_15_
	1	18	17.5	7.5	15	0.8	MPBN105 0450DB 15
	1.5	18	19	10	15	0.8	MPBN155_0450DB_15_
	1	26	17	8	22.5	0.8	MPBN105_0450DB_22_
	1.5	26	18.5	10	22.5	0.8	MPBN155_0450DB_22_
	2.2	26	22	12	22.5	0.8	MPBN225 0450 DB 22
	0.01	13	9	4	10	0.6	MPBN103_0630DB_10_
	0.015	13	9	4	10	0.6	MPBN153_0630DB_10_
	0.022	13	9	4.5	10	0.6	MPBN223 _ 0630 DB _ 10 _
	0.033	13	11	5	10	0.6	MPBN333 0630 DB 10
	0.047	13	12	6	10	0.6	MPBN473 0630 DB 10
	0.068	13	12	7	10	0.6	MPBN683 0630 DB 10
	0.1	13	14	8	10	0.6	MPBN104_0630DB_10_
630V _{DC}	0.068	18	11	5	15	0.8	MPBN683 _ 0630 DB _ 15 _
	0.1	18	12	6	15	0.8	MPBN104_0630DB_15_
220V _{AC}	0.15	18	13	7	15	0.8	MPBN154_0630DB_15_
	0.22	18	14	8	15	0.8	MPBN224_0630DB_15_
	0.33	18	18	9	15	0.8	MPBN334_0630DB_15_
	0.47	18	19	11	15	0.8	MPBN474_0630DB_15_
	0.33	26	16.5	7	22.5	0.8	MPBN334_0630DB_22_
	0.47	26	18.5	8.5	22.5	0.8	MPBN474_0630DB_22_
	0.68	26	19	10	22.5	0.8	MPBN684_0630DB_22_
	1	26	22	12.5	22.5	0.8	MPBN105 0630DB 22 0

Enter the appropriate tolerance lead length code and lead configuration _ from the product code table Note:

PACKAGE OUTLINE ▲ All dimensions in mm

PRODUCT MARKING

Marking	Details		
1 2 2 4	No. Description		
2 3 4	1 Manufacturer Logo *		
H 104 K 2001	2 Nominal capacitance in μF		
7	3 Capacitance tolerance		
2010070 ← 6	4 Date code		
``\\	5 Series name		
U U	6 DC rated voltage		
P≤10mm H P15 to P>27.5mm HJC	7 Production no.		

DATE CODE & APPLICATION CATEGORY

Example:

Date code

2001: 2001 = 1st week of 2020

Lot number

2010070: 20 = Year, here 2020

1 = Month, here January

0001 to XXXX = Serial number

2	20	0	1	
Y	ear	Week		
19	2019	01	1 st	
20	2020	02	2 nd	
21	2021	03	3 rd	
22	2022	04	4 th	
23	2023	05	5 th	
30	2030	53	53 rd	

PRODUCT CODE

Example: MPBN series \blacktriangle 0.1 μ F \blacktriangle 630 V_{DC} \blacktriangle ±10% \blacktriangle P=15mm \blacktriangle Bulk \blacktriangle Straight leads \blacktriangle 17mm lead length

MF	PBN	10)4	ŀ	(06	30	[)	E	3	1	L	1	5	1	
Sei	ries	Code	itance ^{Note1} F)	Capac Toler (%	ance		ed age oc)		tage pe		aging pe	_	ad uration te2		tch m)	Le. Length	
Code	Series	Code	μF	Code	Tol.	Code	VDC	Code	Туре	Code	Туре	Code	Style	Code	mm	Code	mm
MPBN	MPBN	153 473 104 105 225	0.015 0.047 0.1 1 2.2	J K	±5 ±10	0450 0630	450 630	D	DC	В	Bulk	1	SL	10 15 22	10.0 15.0 22.5	1 2	17.0 3.5

Note:

- 1 Capacitance code expressed in pF. The first two digits represent significant figures.
 The last digit specifies the total number of zeros to be added.
- 2 SL = Straight leads

REFERENCE DATA

Fig. 1 • Capacitance Drift vs. Ambient Temperature

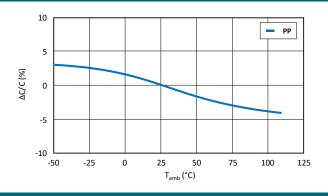


Fig. 2 • Insulation Resistance vs. Ambient Temperature

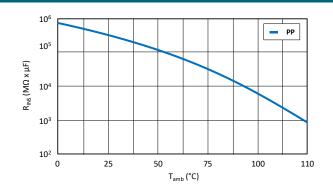


Fig. 3 - Dissipation Factor vs. Ambient Temperature

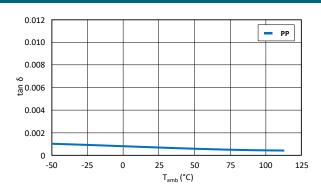


Fig. 4 - Dissipation Factor vs. Frequency

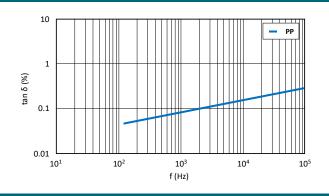


Fig. 5 • Capacitance Drift vs. Frequency

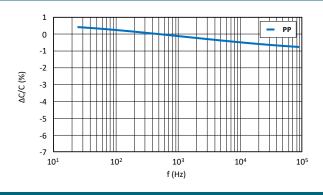


Fig. 6 • Impedance vs. Frequency • Typical Curve

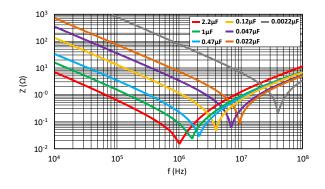


Fig. 7 • Max. RMS Voltage vs. Frequency • 450V_{DC}/200V_{AC}

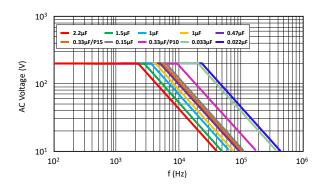
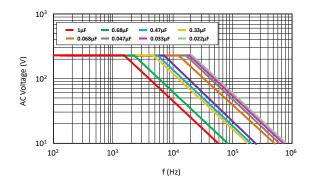



Fig. 8 • Max. RMS Voltage vs. Frequency • 630V_{DC}/220V_{AC}

MGT ▲ Manufacturer Group of Technology

REFERENCE DATA

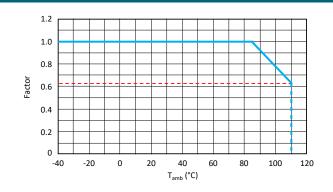


Fig. 10 • Permissible Current Derating by Temperature

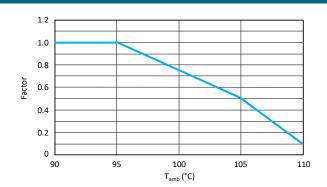


Fig. 11 • Voltage Wave Form

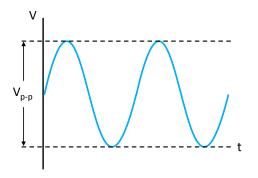
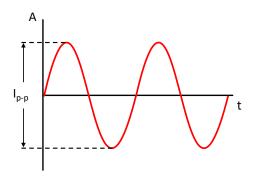



Fig. 12 • Max. RMS Current - Wave Form

MAXIMUM RMS CURRENT

V	C _R	Р				I _{RMS} (A	A) at f			
V _R	(μF)	(mm)	15.75kHz	35kHz	45kHz	65kHz	80kHz	100kHz	130kHz	200kHz
	0.022	10	0.45	0.55	0.58	0.65	0.68	0.73	0.78	0.87
	0.033	10	0.71	0.89	0.95	1.05	1.10	1.18	1.28	1.40
	0.082	10	1.00	1.30	1.45	1.55	1.65	1.75	1.95	2.20
	0.1	10	1.25	1.55	1.68	1.85	1.92	2.05	2.20	2.50
	0.15	10	1.35	1.70	1.80	1.95	2.10	2.20	2.40	2.70
	0.22	10	1.80	2.10	2.25	2.40	2.50	2.60	2.80	3.00
	0.33	10	1.90	2.20	2.30	2.45	2.55	2.70	2.90	3.30
	0.47	10	2.30	2.60	2.70	3.00	3.10	3.20	3.30	3.50
450V _{DC}	0.15	15	1.50	1.70	1.75	1.85	1.90	2.00	2.10	2.25
	0.33	15	2.15	2.50	2.60	2.70	2.80	2.90	3.00	3.20
200V _{AC}	0.47	15	2.70	3.05	3.25	3.40	3.50	3.65	3.80	4.00
	0.68	15	3.69	4.29	4.40	4.62	4.84	4.95	5.39	5.56
	1	15	5.20	5.83	6.05	6.49	6.71	7.10	7.26	7.70
	1.5	15	5.61	6.60	6.82	7.26	7.48	7.81	8.00	8.80
	2.2	15	6.20	7.00	7.25	7.80	7.90	8.30	8.80	9.00
	1	22.5	4.90	5.20	5.30	5.45	5.60	5.70	5.85	6.00
	1.5	22.5	5.00	5.40	5.50	5.70	5.80	5.90	6.00	6.10
	2.2	22.5	5.50	6.16	6.49	6.82	7.15	7.37	7.70	8.25
	3.3	27.5	5.00	5.80	6.00	6.25	6.35	6.80	7.00	7.50

Note: Maximum capacitor surface temperature $T_S \le 110^{\circ}C$; Maximum body temperature rise $\Delta T \le 10^{\circ}C$

 $I_{RMS} = \frac{I_{p-p}}{2 \cdot \sqrt{2}}$

MAXIMUM RMS CURRENT

Fig. 11 • Voltage Wave Form

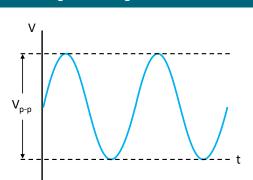
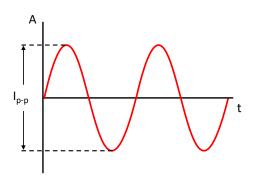



Fig. 12 • Max. RMS Current - Wave Form

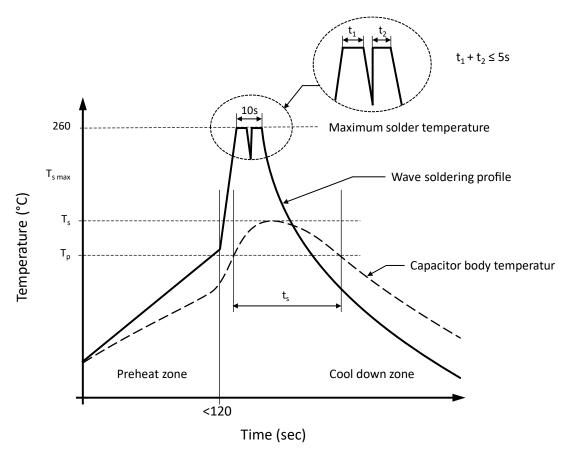
V	C _R	Р				I _{RMS} (A	A) at f			
V _R	(μF)	(mm)	15.75kHz	35kHz	45kHz	65kHz	80kHz	100kHz	130kHz	200kHz
	0.022	10	0.65	0.75	0.78	0.85	0.88	0.90	0.95	1.02
	0.033	10	0.87	1.00	1.05	1.10	1.20	1.25	1.30	1.35
	0.047	10	1.15	1.30	1.35	1.45	1.50	1.55	1.65	1.80
	0.068	10	1.30	1.50	1.60	1.70	1.80	1.85	1.90	2.00
	0.1	15	1.43	1.65	1.71	1.87	1.95	2.10	2.30	2.70
	0.22	15	2.53	3.03	3.25	3.47	3.69	3.85	4.07	4.40
630V _{DC}	0.33	15	3.70	3.90	4.05	4.15	4.20	4.25	4.35	4.45
	0.47	15	3.74	4.40	4.62	4.95	5.17	5.34	5.61	6.16
220V _{AC}	0.68	15	5.50	6.00	6.15	6.45	6.55	6.75	6.95	7.25
	0.68	22.5	3.60	3.75	3.85	3.95	4.05	4.15	4.20	4.25
	0.82	22.5	4.18	4.84	5.06	5.39	5.61	5.83	6.16	6.60
	1	22.5	4.40	5.17	5.39	5.78	6.05	6.27	6.60	7.04
	1.2	22.5	4.84	5.61	5.83	6.38	6.60	6.82	7.15	7.70
	1.5	22.5	5.50	6.49	6.71	7.26	7.37	7.70	8.03	8.50
	2.2	27.5	4.50	5.20	5.50	5.80	6.00	6.30	6.60	7.20

Note: Maximum capacitor surface temperature $T_S \le 110^{\circ}C$; Maximum body temperature rise $\Delta T \le 10^{\circ}C$

$$I_{RMS} = \frac{I_{p-p}}{2 \cdot \sqrt{2}}$$

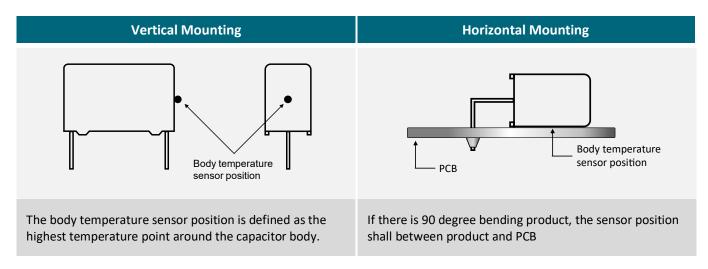
No.	Category		Specification				
1	Scope	This specification applies to capacitors for electronics applications, especially PFC circuits. Reference standards: IEC 60384-16					
2	Product Name	Metallized polypropylene film capacitor, Type MPBN					
3	Construction	Dimensions: 1 = Element 2 = Metal spray 3 = Lead wire 4 = Inner coating 5 = Outer coating	Tinned wire (Cu wire) (Lead Free) compliant Epoxy resin filled. (UL	ene film Free) compliant to RoH or tinned copper clad- to RoHS directive -94V-0 Standard)			
4	Atmospheric and Temperature Characteristics	Standard atmospheric conditions. Unless otherwise specified, the standard range of atmospheric conditions for making measurem tests is as follows: Ambient temperature: 15 to 35°C Relative humidity 45% to 85% Air pressure 86 to 106 kPa If there may be any doubt on the results, measurements shall be made within the following line. Ambient temperature: 20°C ± 5°C Relative humidity: 60 to 70% Operating temperature range Lowest operating temperature: +110°C (case-temperature) with specified voltage-derating. The capacitor can be operated up to 110°C case-temperature (according to the power to be diss.) Derating ratio of rated voltage +85°C to +110°C: 1.25% per °C for V _{RDC} The temperature is measured at the hottest point of the case when the capacitor has reached its equilibrium. Rated temperature range -40°C to +85°C Rated temperature range is the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for which the capacitor can be operated to the range of ambient temperature for whi			oltage-derating ver to be dissipated).		
5	Electrical Characteristics	Rated voltage: Category voltage: Rated upper limit temperature: Usable upper limit temperature: Capacitance range: Capacitance tolerance:	V_R at 85°C Up to 85°C $V_C = V_R$ +85°C +110°C $0.01\mu F$ to $2.2\mu F$ $\pm 5\%$ (J), $\pm 10\%$ (K)	450V _{DC}	630V _{DC}		

No.	Category	Specification								
		Dissipation factor tan	δ (%): LCR mete	r: HP-4284A, at :	20°C ± 5°C					
		f (kHz)	C≤1µF	,,,,		< C ≤ 2.2μF				
		1	≤ 0.10%		≤ 0.1	0%				
		100	≤ 1.50%		≤ 1.2	0%				
		Insulation resistance	hetween termin	als						
		Test conditions:								
		Temperature:	20°C ± 5°C							
		Voltage charge:	100V _{DC}							
			C ≤ 0.33µF			C > 0.33µF				
		Performance:	After voltage charge 1 minute > $30G\Omega$			After voltage charge 1 minute > $10G\Omega \times \mu F$				
		Test voltage between	Test voltage between terminals							
			1.6 × V _{RDC} applied for 2 sec, at 20°C ±5°C							
		Cut off current:	10mA							
		Ramp/rise time:	$C \le 10\mu F$: 5 se	С	C > 1	10μF: 10 sec				
		Performance:	There shall be	no dielectric bre	eakdown or othe	r damage				
		Dielectric strength be	tween terminal	and enclosure						
		Apply 200% of rated v	oltage between	terminals and er	nclosure for 2 to	5 sec				
5	Electrical	Method of the test described as below								
	Characteristics	Put the small metallic a vessel. The test capa with the small metallic Distance of the metall shall be kept about 2 r The test voltage shall I short-circuited termin	acitor shall be su c balls. lic balls and the t mm as shown in be applied betw	bmerged terminals fig. 1. een the allic balls	Fig. 1	Short-circuited terminal 2mm Vessel with metallic balls				
		Performance:	There shall be	no dielectric bre	eakdown or othe	r damage				
		Test Item	The test capac lowing table, a capacitor shall	citor shall be kep and it shall be rep	t in the testing o peated for 5 cycl	ven and kept at condition of foles es successively. After the test, the dition for 2 hours				
			Conditions	Tomnoust	Timo	Performance				
			Step 1	Temperature -40 ± 3°C	Time 30 ± 3 min	Canacitance change				
		Rapid change of	2	Ordinary	3 min or less	Capacitance change ΔC/C ≤ ± 10%				
		temperature	3	+110 ± 2°C	30 ± 3 min	tan δ change				
		(IEC68-2-14 Na)		Ordinary	3 min or less	≤ 0.1% at 1kHz				
			4	Orumary	3 min or less	R insulation ≥ 50 % of limit value				


No.	Category		Specification	
		Test Item	Conditions	Performance
6	Mechanical Characteristics	Robustness of terminations (IEC68-2-21)	Tensile Ua1 A load of 10 N (1.0kg) shall be gradually applied to the terminal in the axial direction and held thus for 10 sec Bending Ub methode 1 While a load of 500g applied to the lead wire, the body of the capacitor shall be bent 90° and returned to the original position. This operation shall be conducted in a few seconds. Then the body shall be bent 90° at the same speed in the opposite direction and returned	There shall be no such mechanical damage as terminal damage etc.
		Solderability (IEC68-2-20 Ta)	to the original position Solder bath: 245°C ± 5°C Immersion time:2.5±0.5sec Visual examination	At least 95% of the circumferential face of lead wire up to immersed level shall be covered with new solder
		Resistance to soldering heat (IEC 68-2-20 Tb)	Solder bath: 260 °C ± 5 °C Immersion time:10±1sec Thickness of heat shunt (Printed wiring board): 1.6mm Capacitance at 1kHz tan δ at 1kHz	Capacitance change $ \Delta C/C \le \pm 1\%$ tan δ change $\le 0.1\%$ at 1kHz
		Vibration proof (IEC68-2-6 Fc) Endurance Characteristics	The frequency shall be varied form from 10Hz to 55Hz at 1.5mm amplitude and back to 10Hz in approximately 1-minute intervals. This motion shall be applied for a period of 2	Bending strength: There shall be no open or short-circuiting and the connections must be stabilized.
7			hours in each of 3 mutually perpendicular directions. During the last 30 min of vibration in each direction, checks shall be made for open or short-circuit and interruption	Appearance: There shall be no such mechanical damage as terminal damage etc.
		Damp heat steady state (IEC68-2-3 Ca)	The capacitor shall be stored at a temperature of $40 \pm 2^{\circ}\text{C}$ and relative humidity of 90% to 95% for 1000 hours. And then the capacitor shall be subjected to standard atmospheric conditions for 1 to 2 hours, after which measurement shall be made	Capacitance change $ \Delta C/C \le \pm 3\%$ tan δ change $\le 0.1\%$ at 1kHz R insulation $\ge 50 \%$ of limit value
		Electrical endurance (IEC 60384-2)	125% of category voltage shall be applied to the capacitor at a temperature of $110 \pm 2^{\circ}C$ for 1000 hours. Then the capacitor shall be subjected to standard atmospheric conditions for 1 to 2 hours, after which measurement shall be made. The load resistor in series with the capacitor shall be 20Ω to $1k\Omega$.	Capacitance change $ \Delta C/C \leq \pm 10\%$ tan δ change $\leq 0.4\% \text{ at } 1\text{kHz}$ R insulation $\geq 50\%$ of limit value

HJC ▲ HUA JUANG COMPONENTS

No.	Category	Specification
		It should be noted that the solderability of the terminals may be deteriorated when stored barely in an atmosphere for a long period.
8	8 Storage conditions	It should not be located in particularly high temperature and high humidity, it must submit to the following conditions (Keeping in the original package) Temperature: 5°C to 35°C Relative humidity: ≤ 70% Storage period: ≤ 12 months (Following the manufacturing date marked on the label in package bag)
		Avoid wetting the capacitor by water, oil, salt and/or poisonous gas.
		If used the capacitor that overdue the storage time, it should be test, the characteristics of the capacitor or contact with our technical engineer.


RECOMMENDED WAVE SOLDERING PROFILE ▲ THT PACKAGE

Capacitor body temperature should follow the description below:

Profile Features		Polypropylene Film Capacitor	Polyester Film Capacitor
Capacitor body maximum temperature at preheating	T _P	≤ 110°C / 120 seconds	≤ 125°C / 120 seconds
Capacitor body maximum temperature at wave soldering	Ts	≤ 120°C / t _s ≤ 45 seconds	\leq 150°C / t _s \leq 45 seconds

DETERMINING THE CAPACITOR BODY TEMPERATURE

HJC ▲ HUA JUANG COMPONENTS

SOLDERING SUGGESTIONS

When solder a capacitor, heat in soldering is conducted to the element of the capacitor from wire lead and an enclosure, and hence it should be noted that soldering under high temperature and a long period may cause deterioration of breakdown of capacitors. Be sure to solder within the recommended temperature condition range.

HAND SOLDERING

- a.) Soldering iron top temperature: ≤ 350°C
- b.) Soldering time: ≤ 3sec

If re-work or dipping twice in necessary, it should be done after the capacitor returned to the normal temperature. Suggestion time is 24 hours.

THT film capacitors are not suitable for reflow soldering.

When SMD components are used together with film capacitor, the film capacitor should not pass into the SMD adhesive curing oven. The film capacitor should be assembled after the SMD process.

In order to ensure proper conditions for manual or selective soldering, the body (surface) temperature of the film capacitor (T_s) must be ≤ 120 °C.

REVISION TABLE

Revision	Date	Status	Notes
001	01/10/2021	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, undertake, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.