

MPIS SERIES

MKP SNUBBER CAPACITOR

High voltage and high ripple current

Double side metallized film with internal series connection

SPECIFICATION

lkom.	"	Chanastan	iation			
Item		Character				
Related Documents		IEC 61071 / 60068				
Rated Temperature Range		-40°C to +8	85°C			
Usable Temperature Range Note 1	-40°C to +	105°C				
Capacitance Range	C _R	0.1μF to 2	.5μF			
Capacitance Tolerance	ΔC	±5% ▲ ±10	0%			
Nominal (Rated) DC Voltage at 85°C	V_{NDC}	850V _{DC}	1000V _{DC}	1200V _{DC}	1600V _{DC}	2000V _{DC}
Rated AC Voltage at 85°C	V_{RAC}	500V _{AC}	550V _{AC}	630V _{AC}	650V _{AC}	700V _{AC}
Dissipation Factor Note 2	tan δ	≤ 0.005%				
Peak Current	I _{PEAK} 160A to 2125A					
RMS Current Note 3	I _{RMS}	8A to 27A				
Equivalent Series Resistance Note 4	ESR	4.5mΩ to	20mΩ			
		Terminal to Terminal: (at 20°C ± 5°C)				
Insulation Resistance	R _{INS}	Voltage ch	arge time: 1	1 minute. Vo	ltage: 100V	DC
		≥ 100GΩ (C _F	_k ≤ 0.33μF)	≥ 300	6Ω ($C_R > 0.33\mu$	F)
		Terminal t	o Terminal:	(at 20°C ± 5	°C)	
Withstand Voltage	Vw	$1.6 \times V_{NDC}$	applied for	10sec		
		2 × V _{NDC} ap	oplied for 2s	ec		
Maximum Pulse Rise Slope		850V _{DC}	1000V _{DC}	1200V _{DC}	1600V _{DC}	2000V _{DC}
dV/dt		750V/μs	850V/μs	1000V/μs	1200V/μs	1600V/μs

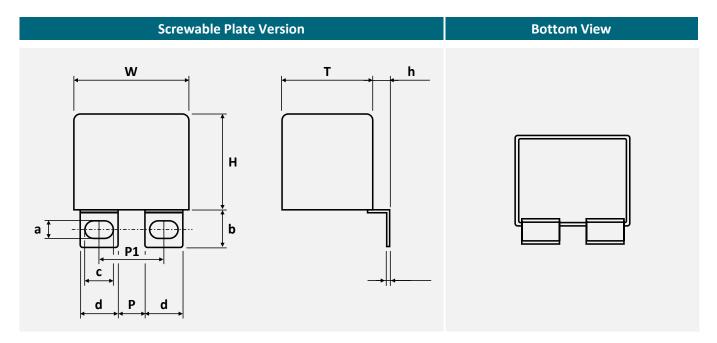
Note:

1: With specified voltage derating

2: Measured at 1kHz3: Measured at 100kHz4: Measured at 100kHz

APPLICATIONS

Frequency Converter	Direct mount on IGBT Modules	Industrial	Motors & Drives	Photovoltaic Inverter	Wind Inverter
	1/4 1/4 1/4			*	+


ELECTRICAL CHARACTERISTICS

V _{N DC}	C _R		Dimensio	ons (mm)		dV/dt	I _{PEAK}	ESR at	I _{RMS}	Part Number ^{Note}
at 85°C	(μ F)	w	н	Т	P1	(V/μs)	(A)	100kHz (mΩ)	100kHz (A)	rait Number
	0.82	42.5	27.5	24.5	24	750	615	7	15	MPIS824_0850DB20814-A
	1.0	42.5	27.5	24.5	24	750	750	6.5	17	MPIS105 0850 DB 20814-A
850V _{DC}	1.5	42.5	35.5	33.5	24	750	1125	5.5	22	MPIS155 0850 DB 20814-A
	2.0	42.5	45	33	24	750	1500	5.5	26	MPIS205 0850 DB 20814-A
	2.5	42.5	45	33	24	750	1875	5	27	MPIS255 0850 DB 20814-A
	0.47	42.5	27.5	24.5	24	850	400	7.5	14	MPIS474 1000 DB 20814-A
	0.68	42.5	27.5	24.5	24	850	578	6	16	MPIS684 1000 DB 20814-A
	0.82	42.5	27.5	24.5	24	850	697	6	18	MPIS824 1000 DB 20814-A
	1.0	42.5	35.5	33.5	24	850	850	5.5	19	MPIS105 1000 DB 20814-A
1000V _{DC}	1.2	42.5	35.5	33.5	24	850	1020	5	21	MPIS125 1000 DB 20814-A
	1.5	42.5	35.5	33.5	24	850	1275	5	22	MPIS155 1000DB20814-A
	2.0	42.5	45	33	24	850	1700	5	23	MPIS205 1000 DB 20814-A
	2.2	42.5	45	33	24	850	1870	5	23	MPIS225 1000 DB 20814-A
	2.5	42.5	45	33	24	850	2125	4.5	24	MPIS255 1000DB20814-A
	0.33	42.5	27.5	24.5	24	1000	330	8	12	MPIS334 1200 DB 20814-A
	0.47	42.5	27.5	24.5	24	1000	470	7	14	MPIS474 1200 DB 20814-A
	0.68	42.5	35.5	33.5	24	1000	680	6	18	MPIS684 1200 DB 20814-A
1200V _{DC}	0.82	42.5	35.5	33.5	24	1000	820	5.5	20	MPIS824 1200 DB 20814-A
	1.0	42.5	35.5	33.5	24	1000	1000	5	21	MPIS105 1200 DB 20814-A
	1.2	42.5	35.5	33.5	24	1000	1200	5	22	MPIS125 1200 DB 20814-A
	1.5	42.5	45	33	24	1000	1500	4.5	26	MPIS155 1200DB20814-A
	0.33	42.5	27.5	24.5	24	1200	396	8	13	MPIS334_1600DB20814-A
	0.47	42.5	27.5	24.5	24	1200	564	7	15	MPIS474 1600 DB 20814-A
1600V _{DC}	0.68	42.5	35.5	33.5	24	1200	816	6	18	MPIS684 1600 DB 20814-A
	0.82	42.5	35.5	33.5	24	1200	984	5.5	20	MPIS824 1600 DB 20814-A
	1.0	42.5	45	33	24	1200	1200	5	22	MPIS105 1600 DB 20814-A
	0.1	42.5	27.5	24.5	24	1600	160	20	8	MPIS104 2000 DB 20814-A
	0.15	42.5	27.5	24.5	24	1600	240	15	10	MPIS154 2000 DB 20814-A
	0.22	42.5	27.5	24.5	24	1600	352	10	12	MPIS224 2000 DB 20814-A
2000V _{DC}	0.33	42.5	27.5	24.5	24	1600	528	8	13	MPIS334 2000 DB 20814-A
- 2000 v DC	0.47	42.5	35.5	33.5	24	1600	752	7	16	MPIS474 2000 DB 20814-A
	0.68	42.5	35.5	33.5	24	1600	1088	6	18	MPIS684 2000 DB 20814-A
	0.82	42.5	45	33	24	1600	1312	5.5	21	MPIS824_2000DB20814-A
	1.0	42.5	45	33	24	1600	1600	5	22	MPIS105 2000 DB 20814-A

Note: Enter the appropriate tolerance code \square from the product code table

PACKAGE OUTLINE ▲ All dimensions in mm

ELECTRICAL CHARACTERISTICS

Dimensions (mm)	w	н	Т	P1	а	b	С	d	е	h	Р
Tolerance (mm)	±1	±1	±1	±3	±0.5	±0.5	±0.5	±0.5	±0.1	±1	±1
	42.5	27.5	24.5	24	6.5	14	10.5	14	0.8	6	9
MPIS	42.5	35.5	33.5	24	6.5	14	10.5	14	0.8	6	9
	42.5	45	33	24	6.5	14	10.5	14	0.8	6	9

PRODUCT MARKING

Marking	Details		
	No.	Description	
	1	Manufacturer Logo	
1 7	2	Nominal capacitance in μF	
2 HJC MPIS	3	Date code	
1.5 uF K 1200VDC 6	4	Capacitance tolerance	
3 →2001 ↑ 2010016 ← 5	5	Lot number	
4	6	DC rated voltage	
	7	Series name	

DATE CODE & APPLICATION CATEGORY

Example:

Date code

2001: 2001 = 1st week of 2020

Lot number

2010016: 20 = Year, here 2020

1 = Month, here January

0001 to XXXX = Serial number

2	20	01			
Ye	ear	Week			
19	2019	01	1 st		
20	2020	02	2 nd		
21	2021	03	3 rd		
22	2022	04	4 th		
23	2023	05	5 th		
30	2030	53	53 rd		

PRODUCT CODE

Example: MPIS series \blacktriangle 1 μ F \blacktriangle 1000 V_{DC} \blacktriangle ±5% \blacktriangle Dimension 42.5 x 35.5 x 33.5 mm

MI	PIS	10)5	J		10	00			E	3	2	2	0	8	1	4	-1	4
Ser	ries	Capac Code (p	Note1	Capac Toler (%	ance	Rat Volt (Vı	age		age pe		aging pe	Config	ad uration te2	Tern distai (m	nce P	Tern Leng (m	th L1	•	ecial ninal
Code	Series	Code	μF	Code	Tol.	Code	VDC	Code	Туре	Code	Туре	Code	Style	Code	mm	Code	mm	Code	Туре
MPIS	MPIS	104 334 824 105 225	0.1 0.33 0.82 1.0 2.2	K	±5 ±10	0850 1000 1200 1600 2000	850 1000 1200 1600 2000	D	DC	В	Bulk	2	TT	08	8	14	14	-A	See Note 3

Note:

- Capacitance code expressed in pF. The first two digits represent significant figures. The last digit specifies the total number of zeros to be added.
- 2 TT = Tinned terminal
- 3 A = Screwable plate connections

HEAT CONDUCTIVITY

In order not to exceed the maximum allowed case temperature rise (ΔT), the formula used to calculate the maximum power that may be dissipated by the capacitor is:

Rise of the case temperature in °C:

$$\Delta T = T_{CASE} - T_{AMBIENT}$$

$$\Delta T = \frac{P}{G}$$

With G, the heat conductivity of the capacitor in mW/°C.

Maximum power that may be dissipated by the capacitor in mW:

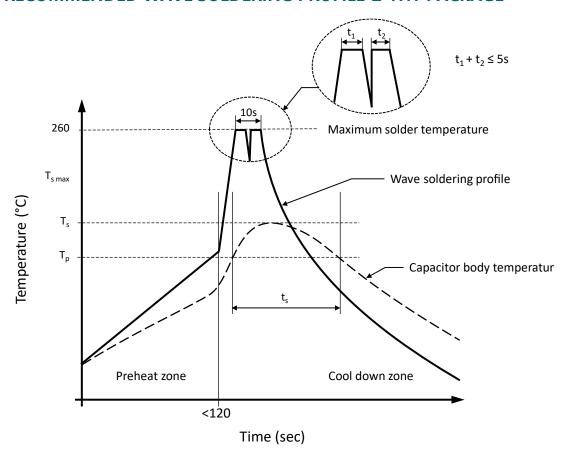
$$P = I_{RMS}^2 \cdot ESR$$

The power-dissipation must be limited so that the case-temperature in the application never exceeds 105°C (observing voltage-derating).

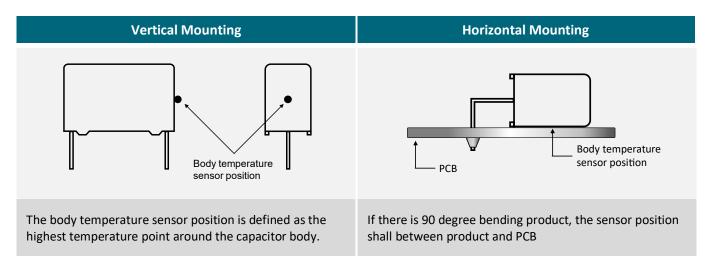
D	Dimensions (mm)									
W	Н	T	G (mW/°C)							
31	18	9	31							
31	20	9	36							
31	22	11	41							
31	24.5	15	46							
31	28	18	54							
31	33	18	58							
31	30.5	20	59							
31	31	22	62							
31	37	22	68							
41.5	35	20	63							
41.5	35.5	20.5	68							
41.5	39	24	73							
41.5	41	27.5	85							
41.5	38	28	83							
41.5	45	30	93							
41.5	45	32	95							
58	45	30	95							
58	50	35	108							
58	53	38	115							

No.	Category		Specification			
1	Scope	This specification applies to capacitors Reference standards: IEC 61071 / IEC				
2	Product Name	Metallized polypropylene film capacit	or, Type MPIS			
3	Construction	Dimensions:	Refer to dimensions drawing 1 2 3			
		1 = Lugs for screw mounting 2 = Element 3 = Metal spray 4 = Inner coating 5 = Outer coating	Tinned copper lugs. (Lead Free) cor Double side Metallized Polypropyle Special solder. (Lead Free) complian Epoxy resin filled. (UL-94V-0 Standard) Plastic case. (UL-94V-0 Standard)	ene Film nt to RoHS directive		
4	Atmospheric and Temperature Characteristics	Standard atmospheric conditions. Unless otherwise specified, the standartests is as follows: Ambient temperature: Relative humidity Air pressure If there may be any doubt on the resultance Relative humidity: Operating temperature range Lowest operating temperature: Maximum operating temperature: The capacitor can be operated up to 1 The temperature is measured at the hequilibrium.	15 to 35°C 25% to 75% 86 to 106 kPa ults, measurements shall be made w 20°C ± 5°C Below 50% -40°C +105°C (case-temperature) with sp 05°C case-temperature (according to	ecified voltage-derating the power to be dissipated).		
5	Electrical Characteristics	All data given at an ambient tempera otherwise specified. Rated temperature: Nominal voltage (V _{NDC} at 85°C): Derating ratio of V _{NDC} (85° to 105°C) Capacitance range: Capacitance tolerance: Dissipation factor: Self-inductance (L _S):	+85°C 850V 1000V 1200V 1.5% per °C for V _{NDC} 0.33μF to 2.5μF ±5% (J), ±10% (K)	1600V 2000V Measured at 1kHz, 1V At 1kHz		

No.	Category		Specification							
		Insulation resistance between	ween termin	nals						
		Test conditions:								
		Temperature:		20°C ± 5°C						
		Relative humidity:		60% ± 5%						
		Voltage charge:		100V _{DC}						
				_	charge 1 minute					
		Performance:		≥ 100GΩ		For $C_R \le 0.33 \mu F$				
				≥ 300GΩ		For $C_R > 0.33 \mu F$				
		Test voltage between ter	minals							
		$1.5 \times V_{NDC}$ applied for 10 s	.5 × V _{NDC} applied for 10 sec, at 20°C ±5°C							
		Cut off current:	10mA, slow up voltage speed: 100V/sec							
		Current limiting resistance	e of $1\Omega/V$ sh							
	Electrical	Performance:		There shall b	e no dielectric break	down or other damage				
5		Test voltage between ter	minal and ca	ase						
	Characteristics	2000V _{AC} (50Hz) applied fo	or 10 sec							
		Performance:		There shall b	e no flashover or oth	ner damage				
		Maximum repetitive pea	k voltages							
		Repetitive surge voltage (V _P)	Maximum within one		V					
		$1.1 \times V_{NDC}$	30% on loa	ad duration	V _{P MAX}					
		$1.15 \times V_{NDC}$	30 minutes	S	V _{NDC}					
		$1.2 \times V_{NDC}$	5 minutes							
		$1.3 \times V_{NDC}$	1 minute							
		$1.5 \times V_{NDC}$	100 ms			t				
		Life time expectancy								
		Operating life:		> 100000h at	t V _{OPDC} and 70°C					


No.	Category		Specification	
		Test Item	Conditions	Performance
6	Mechanical Characteristics	Vibration proof (IEC68-2-6)	10Hz to 55Hz: amplitude ± 0.35mm or acceleration 98m/s ² Test duration: 10 frequency cycles, 3 axes offset from each other by 90° 1 octave/min Visual examination	No visible damage
		Voltage test between terminal	$1.5 \times V_{NDC}$ at ambient temperature. Duration 60sec Capacitance at 1kHz tan δ at 10kHz	$ \Delta C/C \le 0.5\%$ Increase of tan $\delta \le 1.2$ initial $\tan \delta_0 + 1 \times 10^{-4}$ R insulation ≥ 50 % of specified values
		Surge discharge test	$1.1 \times V_{NDC}$ Number of discharges: 5 Time lapse: every 2 min (10min total). Within 5 min after the surge discharge test, the units shall be subjected to a voltage test between terminals Duration 60sec $1.5 \times V_{NDC}$ at ambient temperature. Capacitance at $1kHz$ tan δ at $10kHz$	$\label{eq:deltaC/C} \begin{split} \Delta C/C &\leq 1\% \\ tan \; \delta &\leq 1.2 \; \text{initial tan} \; \delta_0 + 1 \times 10^{-4} \end{split}$
7	Endurance Characteristics	Change of temperature (IEC68-2-14) Test Nb	Test Nb $T_{MAX} = 85^{\circ}C$ $T_{MIN} = -40^{\circ}C$ Transition time: 1 h, equivalent to 1°C/min 5 cycles Capacitance at 1kHz $\tan \delta \text{ at } 10\text{kHz}$	$ \Delta C/C \le 2 \%$ Increase of tan $\delta \le 150 \times 10^{-4}$
		Damp heat steady state (IEC68-2-78)	Test Ca $T_{MAX} = 40 \pm 2^{\circ}C$ $RH = 93 \pm 3 \%$ Duration 56 days $1.5 \times V_{NDC}$ at ambient temperature Duration 60sec Visual examination Capacitance at $1kHz$ $tan \delta$ at $10kHz$	No puncturing or flashover Self-healing punctures are permitted. $ \Delta C/C \leq 2.0\%$ Increase of tan $\delta \leq 150 \times 10^{-4}$
		Self-healing test	$1.5 \times V_{NDC}$ Duration 10sec Number of clearings ≤ 5 Clearing = voltage drop of 5 % increase the voltage at 100 V/s till 5 clearings occur with a max. of $2.5 \times V_{NDC}$ for a duration of 10sec. Capacitance at $1kHz$ tan δ at $10kHz$	$ \Delta C/C \leq 0.5\%$ $\tan\delta \leq 1.2 \text{ x initial } \tan\delta_0 + 1 \times \\ 10^{-4}$

No.	Category		Specification				
		Test Item	Conditions	Performance			
		Thermal stability test under overload conditions	Natural cooling $T_{AMB} \pm 5^{\circ}C$ $1.21 \times P_{MAX}$ $1.1 \times I_{MAX}$ (I_{MAX} see specific reference data) Test duration 48h. Measure the temperature every 1.5h during the last 6 h. Capacitance at 1kHz $\tan \delta$ at 10kHz	Temperature rise < 1°C $ \Delta C/C \leq 2\%$ Increase of tan $\delta \leq 1.2$ initial tan δ_0 +150 × 10^{-4}			
7	Endurance Characteristics	Endurance test between terminals	Sequence $1.4 \times V_{NDC}$ at $T_{MAX} = 85$ °C Duration 250 h $1000 \times$ discharge at $1.4 \times I$ (maximum repetitive peak current in continuous operation) $1.4 \times V_{NDC}$ at $T_{MAX} = 85$ °C Duration 250h Capacitance at $1kHz$ tan δ at $10kHz$	$ \Delta C/C \le 3\%$ Increase of tan $\delta \le 150 \times 10^{-4}$			
		Destruction test sequence	At T _{MAX} = 85°C				
		High DC voltage test	Switch to high DC voltage = $2 \times V_{NDC}$ Duration 5sec	No puncturing or flashover			
		High AC voltage test	Switch to high AC voltage = V _{NDC} / 2V2 Duration 5min	Self-healing punctures are per- mitted			
			Repeat destruction sequence 3 times. Visual examination				
		It should be noted that an atmosphere for a lo	t the solderability of the terminals may be deteriong period.	orated when stored barely in			
8	Storage conditions	It should not be located in particularly high temperature and high humidity, it must submit to the following conditions (Keeping in the original package) Temperature: 5°C to 35°C Relative humidity: ≤ 70% Storage period: ≤ 12 months (Following the manufacturing date marked on the label in package bag) Avoid wetting the capacitor by water, oil, salt and/or poisonous gas.					
		•	hat overdue the storage time, it should be test, to t with our technical engineer.	he characteristics of			


RECOMMENDED WAVE SOLDERING PROFILE ▲ THT PACKAGE

Capacitor body temperature should follow the description below:

Profile Features		Polypropylene Film Capacitor	Polyester Film Capacitor
Capacitor body maximum temperature at preheating	T _P	≤ 110°C / 120 seconds	≤ 125°C / 120 seconds
Capacitor body maximum temperature at wave soldering	Ts	\leq 120°C / $t_s \leq$ 45 seconds	≤ 150°C / t _s ≤ 45 seconds

DETERMINING THE CAPACITOR BODY TEMPERATURE

MGT ▲ Manufacturer Group of Technology

SOLDERING SUGGESTIONS

When solder a capacitor, heat in soldering is conducted to the element of the capacitor from wire lead and an enclosure, and hence it should be noted that soldering under high temperature and a long period may cause deterioration of breakdown of capacitors. Be sure to solder within the recommended temperature condition range.

HAND SOLDERING

a.) Soldering iron top temperature: ≤ 350°C

b.) Soldering time: ≤ 3sec

If re-work or dipping twice in necessary, it should be done after the capacitor returned to the normal temperature. Suggestion time is 24 hours.

THT film capacitors are not suitable for reflow soldering.

When SMD components are used together with film capacitor, the film capacitor should not pass into the SMD adhesive curing oven. The film capacitor should be assembled after the SMD process.

In order to ensure proper conditions for manual or selective soldering, the body (surface) temperature of the film capacitor (T_s) must be ≤ 120 °C.

REVISION TABLE

Revision	Date	Status	Notes
001	01/10/2021	Initial release	Initial publication

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, undertake, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.